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Introduction

I am a mathematical platonist.  By using this label, I intend to communicate both that I believe
that there are many true mathematical sentences and that these sentences are naturally and rightly used to
refer to existing mathematical objects.  Among the mathematical sentences I believe to be true are ‘the
tangent to a circle in a Euclidean plane intersects the radius of that circle at right angles’, ‘7+5=12’, and
‘the power set of a set is always strictly larger than the set itself’.  Among the mathematical objects
which I believe to exist are circles, numbers, functions, and sets.  I believe that mathematical claims like
the ones I mentioned are true, in part, because they express properties and relations of the given
mathematical objects.  I believe that the mathematical objects exist, in part, because they are the subjects
of true mathematical sentences.  Some anti-platonists might object to this reasoning, considering it
circular.  But the circle is not vicious; the truth of mathematical sentences and the existence of
mathematical objects are, in my view, two ways of saying the same thing.

I can’t quite explain why I am a mathematical platonist.  I would like to believe that it has
something to do with the strength of the philosophical arguments for platonism.  But my discussions with
anti-platonist philosophers of mathematics, my arguments and exhortations, are usually unconvincing to
them.  I naturally believe that it is stubbornness on the part of my anti-platonist friends which prevents
them from seeing the strength of the arguments for platonism.  But an uncharacteristic bit of humility
convinces me that they believe that my own stubbornness prevents me from seeing the strength of their
arguments against platonism.  It is difficult in philosophy to convince anyone of anything.  We’re a
stubborn lot.

The best that we can do, I think, in favor of our positions is to lay them out as clearly as possible,
listen to objections, and respond as well as we can.  And then we have to let the rare few of us who are
both interested in the philosophy of mathematics and who are not stubbornly committed to a particular
view to weigh the arguments as objectively and disinterestedly as possible.  This book is for them.

As all books, this one is written in the context of a particular moment.  At this moment in the
philosophy of mathematics, there are two dominant views.  One view, which we can call indispensability
platonism, is the claim that our mathematical beliefs are justified by the uses of mathematics in empirical
science.  The second view, which we can call fictionalism or anti-platonism, is that our mathematical
beliefs are not justified.  There are lots of other views, of course, but I believe that these two are the most
popular and, other than my own view, the most defensible.  When philosophers write about one or other
of these two views, they ordinarily neglect a third view, my own.  Autonomy Platonism and the
Indispensability Argument is my attempt to insert my view into the conversation.

My view about mathematics, intuition-based autonomy platonism, is, roughly and simply, that
our mathematical beliefs are justified but that the justification of our mathematical beliefs does not
depend on the uses of mathematics in empirical science.  In other words, mathematics is a discipline
which contains true sentences which refer to existent objects and is not subservient to or dependent on
empirical science.  I make this claim a bit more precise in Chapter One and I defend it, especially its
invocation of mathematical intuition, in Chapter Nine.

Autonomy platonism has a long and storied history.  The view has its roots in Plato (obviously),
Descartes, Hume, Frege, and Gödel.  More recently, my teacher, Jerrold Katz, and Mark Balaguer have
explored autonomy platonist views too.  The older philosophers have troubling ancillary commitments
which I deny, like the Platonic view that the sensible world is somehow unreal or Descartes’s view that
God imprints knowledge of Himself and mathematics in our non-physical minds.  But the views of Katz
and Balaguer’s plenitudinous platonist are quite similar to my own.  It would not be inapt to think of this
book as an attempt to promote Katz’s view about mathematics and Balaguer has written that Katz’s view
is best seen as a version of his FBP.1

1 Balaguer 1998: 44.
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Platonism has often been seen as a mystical, perhaps theistic view.  Plato held mathematical
objects in reverence.  It’s easy to read Descartes the same way, and Leibniz.  Even Hume, who held
nothing in reverence, saw that the limitations of our experience did not undermine our mathematical
beliefs and sought an alternative route to understanding mathematics.  It is reasonable to ask, as both the
indispensabilist and the fictionalist does, for an end to the mystery.

But it seems to me that the debate between the indispensabilist and the fictionalist is at a
stalemate.  The indispensabilist is convinced by the range of applications of mathematics in science, its
ubiquity, its practical indispensability, and its effectiveness.  The fictionalist is convinced by the isolation
of mathematical objects.  The indispensabilist’s appeals to quantification over mathematical entities fail
to convince the fictionalist to abandon instrumentalism about them.  The fictionalist’s appeals to the
causal inefficacy of mathematical posits fail to appear relevant to the indispensabilist.

It also seems to me that autonomy platonism can capture some core intuitions of both dominant
views.  I reject the indispensabilist’s claim that our uses of mathematics in science provide a reason to
believe in mathematical objects without denying that our references to mathematical objects within
scientific theories are robust.  By taking mathematical objects to exist, the autonomy platonist can not be
accused, as the fictionalist may be, of ignoring the applications of mathematics, of regarding some
portions of our best theories as false.

In contrast, the fictionalist has a point against the indispensability platonist: the uses of
mathematics in empirical science do not have the ontological weight that the indispensabilist attributes to
them.  Scientists using mathematics in science, invoking Hilbert Spaces to represent states of quantum
systems or simply using real numbers for measurement, do not seem to be committing themselves to a
vast universe of abstracta.  They are describing physical systems, not mathematical ones.  The autonomy
platonist agrees with the fictionalist that such uses of mathematics are not epistemologically relevant to
our mathematical beliefs.

Some fictionalists are motivated by their embrace of the indispensabilist’s conditional: if
mathematics is indispensable to science, then we should believe it.  But they deny the antecedent and
urge that there are no other good reasons to believe in mathematical objects.  Such folk are sometimes
called dispensabilists.  Much of philosophy of mathematics over the last thirty-five years has been
centrally focused on dispensabilist arguments and constructions.  This is not another book on such
strategies.  My concern is with the soundness of other premises of the indispensability argument, and
maybe with its validity.

My autonomy platonist captures both the indispensabilist’s intuition that some mathematical
sentences are true and refer to existing objects and the fictionalist’s intuition that uses of mathematics in
science do not commit us to the existence of mathematical objects.  I do, in a sense, assume platonism to
conclude platonism.  I motivate my intuition-based autonomy platonism in part by showing, in Chapter
Five, that there are certain unfortunate consequences for platonism of adopting the indispensability
argument.  For the indispensabilist, the mathematical universe is unduly limited.  But my deeper claim,
which I make in detail in Chapter Ten, is that the circle is virtuous.  We can justify mathematical beliefs
without support from science, but we do need a little bit of philosophy.  On my view, either you buy the
whole story or you don’t.  Perhaps the open-minded philosopher of mathematics should reconsider the
value of such a position.  Or, at least, s/he might acknowledge its viability in the debate.

When I was a graduate student, I had two mentors without whom my career as a philosopher
could not have begun.  I don’t know anyone who I believe was more right about more of philosophy than
Jerrold Katz.  I wish he were still with us.  David Rosenthal continues to be a brilliant and generous
mentor to me, and a friend.  

I owe a great thanks to Jana Hodges-Kluck of Lexington Books for her encouragement and her
patience as I struggled to recover from some personal difficulties as the draft of the book was due.
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While this book is fairly polemical, especially in the last few chapters as I develop a traditional,
mathematical intuition-based autonomy platonism, I hope that my explications of the arguments (from
Quine and Putnam especially, but also of more recent indispensabilists) will be useful to those interested
in the indispensability argument.  There is no canonical version of the argument and subtle differences
can be misleading.  I’ve spent a lot of time on Quine’s work and Putnam’s work and in places, especially
in the second and sixth chapters, I treat them as historical figures, reading broadly and closely and
working hard on proper interpretation.  In portions of those chapters, I put aside, as much as possible, my
polemicism and try to get at the strongest, most charitable presentation of the argument as I can.

The book covers some of the same ground as my dissertation, especially in the earlier exegetical
chapters.  But it is new work.  Chapter Seven is an extended version of my, “How Not to Enhance the
Indispensability Argument.”  Etc.

Lastly, thank you especially to my wife, Emily, for her stalwart support and encouragement, and
to my wonderful children, Marina and Isidor, for their patience and for not ever making me feel too bad
about pursuing my professional dreams by thinking and reading and writing about mathematics and
philosophy, even if it meant some distraction from what is most important.



Chapter 1: Platonism: An Overview

§1: Benacerraf’s Dilemma
The most general questions in the philosophy of mathematics divide into two types. 

Epistemological questions concern how we know what we know about mathematics.  We acquire
mathematical beliefs in a variety of ways.  We learn some mathematics from teachers and textbooks,
authorities who provide what we take to be reliable testimony of mathematical facts.  We quietly reflect
on those facts, perhaps inferring others from them.  We also generalize from our sense experience,
counting apples, say, or measuring distances.  When we get to the business of epistemology, we look for
justifications of those beliefs, not their origins.  How do we know that the mathematical statements that
we learn in our different ways are all true, independent of how we learned them?

Ontological questions concern the subjects of mathematical sentences and theories.  What are
numbers and spaces and sets?  What are their properties and relations?  They do not seem to be like
ordinary objects, since we do not see or touch them.  Their properties, like primeness or being
equilateral, are also unavailable to sense experience.

Perhaps the first step to determining what mathematical sentences are about is to look at
semantic theories for our language.  Semantic theories guide us whenever we want to understand the
meanings and references of our language.  In a first, shallow analysis, they tend to parse sentences into
subjects and predicates, objects and their properties.  A sentence like ‘the grass is green’ predicates a
property, being green, of an object, the grass.  Many mathematical sentences also seem to refer to
objects, like numbers or tori, and to predicate properties of those objects like primeness or
dimensionality.

The central problem which arises when thinking about answers to these two kinds of questions is
that the most obvious answers to the questions of the first type conflict with the most obvious answers to
questions of the second type.  Knowledge of mathematical objects seems difficult to reconcile with our
best accounts of our knowledge more generally.  We can call this problem Benacerraf’s dilemma, after
Benacerraf 1973. 

Much has been written about Benacerraf’s dilemma, which has appeared to some philosophers to
be intractable.  The indispensability argument, one of the two central subjects of this book, is a popular
and influential attempt to avoid the dilemma, to show how realistic (or platonistic) answers to the
ontological questions about mathematics are compatible with our best epistemology.  I agree with
indispensabilists that our best accounts of mathematics and our knowledge of it avoid Benacerraf’s
dilemma.  But I argue that ways of solving the problems raised by Benacerraf which do not appeal to the
indispensability argument are preferable to solutions that invoke that argument.

Let’s take a moment to see Benacerraf’s dilemma more clearly.  Consider a few mathematical
beliefs: that the tangent to a circle intersects the radius of that circle at right angles, that the square root
of two can not be expressed as the ratio of two integers, that the set of all subsets of a given set has more
elements than the given set.  Such propositions refer, when read in a straightforward manner, to
mathematical objects such as circles, integers, and sets.  These objects are in many ways unlike ordinary
physical objects such as trees and cars.  We learn about ordinary objects, at least in part, by using our
senses.  It is difficult to see how we could use our senses to learn about mathematical objects.  We do not
have sense experiences of integers or sets.

Even geometric figures, mathematical objects perhaps most closely related to physical objects,
are not the kinds of things that we can sense.  Consider any point in space; call it P.  P is only a point, too
small for us to see or otherwise sense.  Now imagine a precise fixed distance away from P, say an inch
and a half.  The collection of all points that are exactly an inch and a half away from P is a sphere.  The
points on the sphere are, like P, too small to sense.  We have no sense experience of the geometric
sphere, a mathematically precise object.

In order to mark the differences between ordinary objects and mathematical objects, we often
call mathematical objects abstract to contrast them with the concreteness of ordinary objects.  There is
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some debate about what ‘abstract’ means and how best to characterize the abstractness of mathematical
objects.  Still, there is some agreement on the properties ordinarily ascribed to mathematical objects: An
abstract object lacks spatio-temporal location.  Its existence is not contingent on our existence.  It lacks
causal efficacy, though our belief about an abstract object may affect our other beliefs and our actions.

When we study geometry, the theorems we prove apply directly and exactly to mathematical
objects, like a sphere, and only indirectly and approximately to physical objects, like a ball.  Numbers,
too, are insensible.  While we might see or touch a bowl of precisely eighteen grapes, we see and taste
the grapes, not the eighteen.  We can see a numeral, “18,” but that is the name for a number, just as the
term “Russell” is my name and not me.  We can sense the elements of some sets, but not the sets
themselves.  And some sets are sets of sets, abstract collections of abstract objects.  Mathematical objects
are not the kinds of things that we can see or touch, or smell, taste or hear.

When we want to explain how we know about anything that we know, we ordinarily appeal to
our sense experiences, especially to what we see or touch.  I see the desk in front of me; I can bang my
fist on it for emphasis.  We are rightly suspicious of anyone who claims to justify any of their beliefs
through non-sensory appeals: to psychic insight or an inexplicable feeling of rectitude.  If we can not
learn about mathematical objects by using our senses, a serious worry arises about how we can justify
our mathematical beliefs.  

Benacerraf originally constructed his dilemma in the context of a causal theory of knowledge. 
On the causal theory of knowledge, a person knows that p just in case s/he has a justified true belief that
p along with a causal connection to the subject of that belief.  On the causal theory, we are prohibited
from claiming that we know anything about mathematical objects because we have no causal contact
with them.

It is now ordinarily accepted that Hartry Field’s more-general formulation of the dilemma is
superior to the original.  Field avoids Benacerraf’s appeals to that contentious epistemology.

Benacerraf’s challenge...is to provide an account of the mechanisms that explain how our beliefs
about these remote entities can so well reflect the facts about them. The idea is that if it appears
in principle impossible to explain this, then that tends to undermine the belief in mathematical
entities, despite whatever reason we might have for believing in them (Field 1989: 25-6).

Field thus attempts to generalize the problem away from the causal theory of knowledge. 
Instead, he claims it is a problem about constraints on our beliefs, about accounting for how we could
know about mathematics given our best views about epistemology, whatever they turn out to be.  How
could our beliefs about abstract objects be reliable if we are causally (or otherwise) isolated from those
objects?

That is, then, the Benacerraf-Field dilemma: our mathematical knowledge seems to be beyond
our epistemic abilities.  On the one hand, our knowledge of mathematics appears to be among our most
secure: who could deny that seven plus five is twelve?  On the other hand, justifying those beliefs seems
to demand appeals to mysterious, or at least non-sensory, epistemic capacities.  It seems as if we must
either cede our beliefs about mathematical objects or give up our best theories of knowledge.

Before we move on to responses to Benacerraf’s dilemma, it will be useful to characterize a bit
further the account of mathematical objects I presented in this section, one which I take to be standard
and traditional, if not widely accepted due to concerns like the ones Benacerraf and Field discuss.  This
standard view is ordinarily called platonistic.  Platonism, as I will use the term, is composed of two main
claims: a semantic thesis (PS) and a related ontological thesis (PO).

PS: Some existential mathematical sentences are true and others are false.  Universal and
conditional mathematical claims may be non-vacuously true or false.
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PO: There are abstract mathematical objects, possibly including (but not limited to) sets,
numbers, and spaces.

As I understand PS and PO, they are tightly related: mathematical sentences are true or false
because they include references to mathematical objects with particular characteristics.  ‘Seven is prime’
is true because the number seven is prime.  The truth of ‘there is an even prime’ entails the existence of
the number two.

Seeing a tight connection between PS and PO is not an artifact of a platonist view about
mathematics.  It is just the result of a literal reading of mathematical sentences and a standard theory of
truth.  One need not be a platonist to see PS and PO as linked.  A fictionalist, one who takes sentences
like ‘seven is prime’ to be false, also naturally accepts the link.2

It is possible to try to sever the semantic and ontological theses, especially by adopting PS
without PO.  One might, for example, take mathematical sentences to be about concrete objects or to be
shorthand for complex logical sentences.  One could then take mathematical sentences to be true or false
without committing oneself to the existence of abstract objects.  I don’t believe that this is a promising
route and I will sketch why I believe that standard, literal readings of mathematical sentences are
preferable, where possible, in the next section.  But this book is mainly focused on the contrast between
two different ways to account for standard semantic analyses of mathematical language and I will not
spend much time on such proposals.

§2: Anti-Platonistic Responses to Benacerraf’s Dilemma
Philosophers have developed a range of strategies to deal with Benacerraf’s dilemma, from

embracing the epistemic horn and denying that there are abstract mathematical objects to embracing the
ontological horn and positing a contentious capacity called mathematical intuition.  These responses can
be divided into four main groups and arranged, somewhat artificially, according to whether they are more
closely aligned with Benacerraf’s worry about our epistemic capacities or whether they are more closely
aligned with Benacerraf’s concern about our ontological commitments to mathematical objects.  I will
call these groups fictionalists, reinterpreters, indispensability platonists, and autonomy platonists.

At the epistemic edge, fictionalists give up hope of accounting for knowledge of abstract objects
and argue that mathematical objects do not exist and that mathematical theories about those objects are,
strictly speaking, false.  More precisely, fictionalists believe that existential claims about mathematical
objects are false while universal or conditional claims about mathematical objects are vacuously true. 
So, ‘seven is prime’ is false because there are no numbers.  ‘Every rhombus is a parallelogram’,
understood as the universally quantified conditional, ‘(�x)(Rx e Px)’, is true because there are no
rhombuses and so the antecedent is unsatisfied by any object; a conditional with a false antecedent is
vacuously true.  Mathematical theories, for the fictionalist, are convenient, useful stories, but not to be
taken literally.

Contemporary fictionalism traces to Field’s defense in Science without Numbers and his ensuing
work.  David Papineau joined Field in defending fictionalism, as did Stephen Yablo.  More recently,
Joseph Melia, Mary Leng, and Octavio Bueno have urged that the fictionalist view of mathematics
represents a properly austere ontology.  Fictionalists are divided about the proper route to the defense of
their view.  Field, defending dispensabilism, believes that we must show how scientific theories can be
developed without appeals to mathematical machinery.  Melia and Leng, defending what has come to be

2 “From the importance and non-arbitrariness of [mathematical] axioms, it doesn’t obviously
follow that these axioms are true, i.e. it doesn’t obviously follow that there are mathematical entities that
these axioms correctly describe” (Field 1980: 5, emphasis added).
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known as easy-road (or weasel) nominalism, argue that we can deny our beliefs in mathematical objects
without formulating alternative scientific theories.  All fictionalists agree that a central motivation for
denying the existence of mathematical objects is epistemic: we have no hope of describing access to
mathematical objects and so no reason to believe that they exist.

Reinterpreters agree with fictionalists that there is no hope for an account of knowledge of
abstract mathematical objects and so that mathematical objects, as standardly conceived, do not exist. 
They do not agree with fictionalists that mathematical theories are false or vacuous.  Instead, they take
mathematical terms to refer elliptically to non-mathematical objects.  Rather than deny the truth of
mathematical sentences, they proffer alternative objects to model mathematical theories.  

Historically, Locke, who believed that mathematical theories were about psychological objects,
is best classified as a reinterpreter.3  More recent reinterpreters, like the early Penelope Maddy, rely on
physical objects to construct their models.  Other reinterpreters, including Charles Chihara and Geoffrey
Hellman, appeal to modal properties: possible structures or possible constructions.

I will not say much about either fictionalists or reinterpreters in this book.  One reason that I will
not is that I find these views repugnant.  The fictionalist claims that ‘five plus seven is twelve’ is false. 
The reinterpreter says that it is about ideas, or concrete objects, or possible arrangements of those
objects.  These claims seem highly implausible.  They are best seen as interesting ways of re-interpreting
claims which are literally about mathematical objects.  But finding these views repugnant is mainly
dogmatic stubbornness on my part.

More reasonably (I hope), both categories of views share a debilitating skepticism about our
epistemic capacities.  Fictionalists and reinterpreters despair of any defensible account of our access to
mathematical objects.  Since abstract objects are causally isolated from us, knowledge of them appears to
be beyond our abilities and platonism appears to involve us in mystery.  Whether we put the worries of
the fictionalists and reinterpreters in terms of Benacerraf’s causal theory of knowledge or in terms of
Field’s demand for an account of the reliability of platonist mathematical beliefs, the concern is the same.

Special ‘reliability relations’ between the mathematical realm and the belief states of
mathematicians seem altogether too much to swallow.  It is rather as if someone claimed that his
or her belief states about the daily happenings in a remote village in Nepal were nearly all
disquotationally true, despite the absence of any mechanism to explain the correlation between
those belief states and the happenings in the village (Field 1989: 26-7).

In the next section, I discuss two reasons that I will not spend much time on the worry about our
access to mathematical objects in this book.  First, I believe that the worry is overstated.  A proper
attention to the ways in which our ontological commitments are justified neatly deflates the problem of
access.  Second, in the absence of a settled account of human epistemology, it seems reasonable not to
dismiss the platonist alternatives until we can see whether they really are workable.

Even more importantly, here, this book is about the differences among two kinds of platonist
accounts of mathematics: autonomy platonism and indispensability platonism.  Problems of access, if
there really are any, will apply to any version of platonism and so can not help us decide between
competing platonistic views.  But because the access problem is well-known and because it motivates
anti-platonist responses to Benacerraf’s dilemma, it is worth a moment.

3 “I do not doubt but it will be easily granted that the knowledge we have of mathematical truths
is not only certain, but real knowledge, and not the bare empty vision of vain insignificant chimeras of
the brain. And yet, if we will consider, we shall find that it is only of our own ideas (Locke, Essay,
§IV.4.6).
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§3: The Access Problem
§3.1: Against Naive Empiricism

The access problem is often taken as the central challenge facing the platonist.  Whether framed
in terms of Field’s Nepalese village example or Benacerraf’s causal theory of knowledge, the problem is
essentially the same.  An intuitively pleasing view of how our beliefs are acquired and justified on the
basis of our sense experiences seems impossible to reconcile with the standard, platonist view of
mathematics.  We don’t have sense experiences of abstract objects.

The access problem is really a vestige of a false, if intuitively pleasing, naive empiricist view
about the relationship between our sense experiences and our ontology.  The naive empiricist view is that
the things we know most securely are those we perceive, with our senses, directly.  All other objects that
we countenance must have some constitutive or causal relation to those objects.  The access worry arises
because mathematical objects are neither constitutive of nor causally connected to the things we know
best.  But this view about what objects we believe exist is utterly misleading.

We do not know categorically both what there is and how we know about it.  Even if we seem to
know those things, we do not know that we know them.  We have good reasons to believe that sense
experience is somehow central to our epistemology and we have a rough picture of how sensory
stimulation and cognitive processing lead to our theories of the world: our senses are stimulated sending
signals to our brains; we perceive these events by having thoughts with some content; we somehow
organize and arrange these various contents, comparing and contrasting our current experiences with
previous ones which we have stored in memory (and which we are able to reconstruct); we look for
unifying principles that explain or predict past or future experiences.  Many details of the story of how
sense experience leads to robust theories of the world remain to be discovered and organized.

However the simple story is expanded or completed, it is clear that our beliefs about the world
are not limited to the dictates of immediate sense experience and memory.  When I open my eyes in my
front yard, I perceive a maple tree.  The neurophysiological process that leads to my perception of the
tree is more complicated than a simple appeal to the stimulation of my retina by light.  The same retinal
stimulation can lead to all sorts of different perceptions, depending on my attention and background
beliefs.  The ways in which our cognitive apparatus participates in developing perceptions is significant
and still poorly (even if increasingly less poorly) understood.

Any complete account of human epistemology will have to take into account both the bare
physical facts of the stimulation of our sense organs and the contribution of our cognitive apparatus to
our beliefs.  Once we discard our naive empiricism, accounts of our beliefs which posit abstract objects
are possible; indeed they can be compelling.  Along with the admission of abstract objects, we can
countenance a priori (i.e. non-empirical) justifications of our beliefs about them.  For example, some
good accounts of our knowledge of language posit both abstract linguistic objects (e.g. propositions) and
native structures in the brain which are consistent with a priori apprehension of those objects.4  In
parallel, our best accounts of mathematics may posit both abstract mathematical objects and native
structures in the brain which are consistent with a priori apprehension of those objects.

Once we start exploring the role of contemporary psychology in learning mathematics, we are
moved to examine the role of our cognitive apparatus in determining our experience.  We can seek an

4 Chomsky’s account of language learning is sometimes called rationalist, due to its denial that
grammar and vocabulary are learned by behavioral conditioning.  But Chomsky’s view is most aptly
labeled nativist and/or conceptualist, rather than rationalist, due to his antipathy toward a priori
epistemology and linguistic platonism.  A better view along these lines is that of Katz 1990.  Both Katz’s
linguistic platonism and Chomsky’s linguistic conceptualism are consistent with the original poverty-of-
the-stimulus argument against linguistic behaviorism.
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understanding of the ways in which our brains work as we acquire and justify a priori knowledge.  It is
an open empirical question whether such a project can be completed.  But countenancing a priori
knowledge need not commit us to mystery.  It is just a natural fact about human cognition that reasoning
in the formal sciences, about the abstract objects of mathematics, is independent of sense experience.  It
appears, to those in the grip of the intuitively pleasing naive empiricism, to be epistemically responsible
to deny that we have any knowledge of abstract objects, given their unavailability to our senses.  But
such a claim is premature given the security and independence from empirical refutation of mathematical
knowledge.

§3.2: Constructive and Transcendental Epistemologies
Epistemologists often debate a variety of contrasting views: foundationalism and coherentism,

internalism and externalism.  Putting those two particular pairs aside, we can contrast two kinds of
approaches to epistemology which I will call constructive and transcendental.  In a constructive
approach, we start with our best theories about our psychological capacities and then speculate about
what we can learn using those capacities.  In a transcendental approach, we begin with some tentative
beliefs about our psychological capacities and some tentative claims about knowledge and attempt to
bring these beliefs in line.  

Empiricists from Locke, Hume, and Mill to both Quine and Field adopt constructive approaches
to epistemology within an empiricistic framework, assuming that our evidence is limited to sense
experience, in some way.  On an empiricist’s constructive approach to epistemology, we start our
epistemology with our sense experiences and work our way forward, constructing unifying explanations
out of our sense experience, often in the guise of scientific theories.  We commit to the flames or
disregard as meaningless any claim that can not be traced back to original sense experience.  Quine,
though he abandoned the ontological reductionism of the logical empiricists, maintained their
constructive approach to epistemology by continuing to hold that all experience, all evidence, is sense
experience.  We can see the non-reductionist version of a constructivist epistemology, for example, in his
The Roots of Reference.

Field, in denigrating platonistic ontology for its mystery, in accusing the platonist of having a
problem of access, adopts the same constructive approach.  While Field does not defend a causal theory
of knowledge and does not state explicitly that all experience is sense experience, the best way to
understand the Nepalese village criticism is as a demand for some sort of contact, some sort of
interaction, between ourselves and the objects of our ontology.  In empirical theories, such a demand
might be reasonable, though it is difficult to see how a story of contact or interaction could be
constructed for our beliefs about, say, electrons or magnetic fields.  In mathematical theories, such a
demand begs the question regarding abstract objects.  Of course we have no story about our knowledge
of abstract objects that parallels the story of how we know what happens in remote or nearby villages. 
Even to demand such a story is to rule out an account of abstract objects by insisting that our knowledge
of a proposition must arise from some contact with or experience of the subjects of that proposition. 
Anti-platonistic reinterpreters, despairing of knowledge of abstract mathematical objects, also seem to be
constructivists in the same way.  We have no contact with, or direct access to, abstract objects, so true
mathematical sentences must have other subjects.

Philosophers motivated by worries about access present a latent, overly-simplistic view that
appeared in the work of both the modern and the logical empiricists.  They assume that there must be
some way to connect any object that exists with our sense experience, at least in principle.  Defenders of
the indispensability argument, like Quine, persist in this assumption by arguing that our mathematical
beliefs are justified by their utility to science.  Much of this book is an attempt to show that Quine got the
account of our knowledge of mathematical objects wrong.  But this much he got right: ontology is a
question of interpretations of how best to interpret our theories, not a question of with which objects we
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come into contact.  Ontology is more complicated than simple stories about access.  The lesson of
Quine’s rejection of logical empiricism is not holism, but that the proper methods for determining our
ontological commitments are not direct and unmediated.

In contrast, a transcendental approach to epistemology starts with assumptions about the kind of
knowledge that we have and then either speculates or empirically researches our neuropsychological
capacities for attaining that knowledge.  We know that we exist, that there is a hand in front of me, that
acorns  become oaks, that two and two are four.  We know these propositions more thoroughly, more
securely, more reliably, than most of us know about human psychology and neuroscience.  On the
transcendental approach, such claims are fallible constraints on our epistemology.  Any account which
denies such claims is deeply suspicious.

Rationalists tend to be transcendentalists, in my sense of the term, though rationalists can be
constructivists, too.  A rationalist constructivism would start epistemology with settled views on the roles
of sense experience and rational reflection.  But rationalists tend to invoke reason as an inference to the
best explanation rather than as a settled matter.  For example, Descartes concludes that some ideas are
innate from his inability to explain the presence of certain ideas on the grounds of fantasy or sense
experience.  Contemporary nativists (often classified as rationalists, pace fn. 4) often invoke similar
poverty-of-evidence arguments.  Such arguments are best seen as transcendental, as I use the term, as
inferring the nature of our capacities rather than presuming them.

Kant’s transcendental deduction of the categories of the understanding is a paradigmatically
transcendental approach.  Kant made errors in the details of his conceptual analysis.  Most instructively,
he aligned the notions of apriority and necessity, claiming that all a priori judgments hold necessarily. 
Since some of the judgments Kant thought were a priori turned out to be false, Kant’s approach seems
doomed.  

While I do not recommending reviving Kant’s epistemological project in detail, I do pursue a
transcendental approach to epistemology in this book, including appeals to a fallibilist a priori, which I
will discuss in the next section.  Such an approach is perfectly compatible with, indeed best suited for,
empirical psychology.  On the transcendental approach, we start with defeasible assumptions about what
we know.  Then we learn how our brains and bodies work to generate that knowledge.  What are the
environmental and neuro-psychological conditions that make such knowledge possible?  By adopting a
transcendental approach, we trade the epistemic hubris of the constructivists for epistemic humility.  We
see that epistemology is an ongoing project which balances our best claims about the world with our best
knowledge of our cognitive apparatus.  It is not a project of constructing whatever ontology we can
construct given a settled account of our cognitive apparatus.

The major problem with the constructive approach is that we lack substantial information about
our cognitive capacities.  The empiricist’s constructive approach rules out a priori methods of
justification, and rules them out, ironically, a priori, leaving us neglecting the ontological horn of
Benacerraf’s dilemma.  If we want to take the references of our mathematical theories seriously, if we
want to account for mathematical knowledge, we should adopt a transcendental method for epistemology. 

In the absence of a completed cognitive science, we may explore a priori cognitive abilities,
including the capacity which I call mathematical intuition and discuss in Chapter 9.  As Chomsky’s
approach in linguistics led to a fruitful linguistic nativism, a transcendental approach in the philosophy of
mathematics leads to mathematical apriorism, whether in the thin form required for Balaguer’s FBP
(which requires only a bare ability to recognize consistency) or in thicker appeals to mathematical
intuition.  

Positing a priori epistemic capacities like mathematical intuition is often seen as approaching
mysticism.  It’s all very well, says the constructive epistemologist, to wave one’s hands at our ignorance
of neuroscience and promise an account of our knowledge of mathematical objects.  But even now, we
can see that there is no hope for any kind of contact between ourselves and the abstract objects of
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mathematics.  Whatever is happening in the brain, says the constructive epistemologist, it won’t give us
access to mathematical objects.  The case is like that of the purported knowledge of Nepalese villages. 
The transcendental project is doomed.

Empiricist constructivists believe that they can either account for the kinds of knowledge that
have variously been called relations of ideas, a priori, necessary, or analytic, or that they can deny that
any knowledge has such characteristics.  They claim that they can avoid positing cognitive abilities like
mathematical intuition through programmes such as fictionalism.  This Ockhamist approach is noble, to
be sure, avoiding ad hoc ascriptions of speculated cognitive capabilities.  But it may leave all but the
most recalcitrant naturalist hungry for something more substantive.

Do we allow our ontology to lead our epistemology, as the transcendental approach does?  Or
shall we let our epistemic speculations lead our metaphysics?  The proper approach balances the two
kinds of considerations.  Overemphasis on the transcendental approach puts us in the company of the
psychics and astrologers and the speculative metaphysicians from whom Kant sought to distance himself. 
Overemphasis on the constructive approach is unwarranted in the absence of a complete understanding of
our cognitive abilities.  We need not wait until cognitive science is finished to get a good epistemological
theory, but we should not proceed as if we know exactly how cognitive science is going to come out.

§3.3: The Fallibilist A Priori
So my first response to the worry about access to mathematical objects is that some patience

while cognitive neuroscience proceeds is prudent.  Neuroscientists are unlikely to discover some
heretofore hidden sixth sense of mathematical intuition.  But neither is an account of our a priori abilities
to know about mathematics without causal contact between us and non-spatio-temporal mathematical
objects impossible.  I have no detailed story to tell about the neuro-psychological basis of mathematical
reasoning; I leave that to the professional psychologists and neuroscientists.  If there turn out to be good
empirical reasons to believe that no such account is possible, then what I say about a priori knowledge of
mathematics will have to be abandoned.  But unless and until there are such reasons, until we have a
much better picture of how we reason and a much better picture of how the apparent security of
mathematics is consistent with a denial of a priori knowledge, platonism is an open question.  To put it
bluntly if a bit oxymoronically, I am defending a naturalistic kind of rationalism, one which is consistent
with a non-mystical view of human beings.

Such a proposal raises in some philosophers a worry like the following: If we are merely the
products of evolutionary forces, and our ability to reason is developed (and thus constrained) by
environmental pressures to reproduction, then there is no reason to believe that our a priori reasoning
will track truth.  Since a priori justifications are supposed to be infallible, and since there is no reason to
believe that any of our reasoning has that characteristic, there is no reason to believe that any of our
reasoning is a priori.

This objection is flawed due to its reliance on an implausible conception of the a priori, though
one which many philosophers have held.  On this implausible conception of a priori reasoning, the
dictates of reason are supposed to be immune from error.  If we consider the concept of a priori
justification, we can see clearly that infallibility is too strong a condition to place on such reasoning. 
Many contemporary defenders of a priori knowledge have adopted a fallibilist view.  On the fallibilist
notion that I invoke, apriority is a property of belief justification.  A belief is justified a priori if the
justification does not appeal to sense experience.  

Pure mathematical proofs are a priori on this conception.  To see this claim, let’s look at a
simple example, the classic proof that the square root of two is irrational.5  It starts by supposing, for

5 Compare to Brown 2008, Chapter 1.
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reductio, that %2 is rational.  By the definition of ‘rational’, %2 should be expressible as a/b, where a and
b are integers.  We can suppose a/b to be in lowest terms, which means that a and b have no common
divisors, a supposition whose ground, that any fraction can be expressed in lowest terms, is
independently provable.  Since a/b = %2, a2 = 2b2.  It follows (by definition) that a2 is even and then that a
is even, since any number whose square is even is itself even.  Since a is even, a = 2c, for some c.  Then
a2 is also equal to 4c2.  So 2b2 = 4c2 and thus b2 = 2c2, which entails that b is also even.  We have shown
that a and b are both even, which contradicts our assumption that a/b is in lowest terms.  Thus, our initial
assumption is false; %2 is not rational.

While we use our senses to perceive this proof, either by reading it or hearing it, say, none of the
steps of the proof require or even could be justified by sense experience.  The singular terms refer to
mathematical objects which we can not perceive with our senses.  There are universal claims, like the
claim that any number whose square is even is even, which can not be justified by particular experiences,
enumeratively, since it concerns infinitely many particular results.  Moreover, the notion of an irrational
number seems impossible to acquire empirically.  Even if we took terms like ‘a’ and ‘b’ to refer to
objects available to our senses (like lengths of the edges of fields), we could never discover irrational
numbers by sense experiences in the way that we could discover the rationals.  Given any unit distance,
there will be objects whose length is no multiple of that unit.  But given the density of the rationals, we
could always some ratio of multiples of any unit distance to serve for any measurement purposes.

These considerations favoring taking mathematical proofs to be a priori do not entail that such
claims are infallible.  We sometimes get proofs wrong, mistaking an invalid inference for valid, say, or
making an unjustifiable assumption.  Such errors, too, may be a priori.  That is, they may themselves be
the result of errors in reasoning which are not explicable in terms of the fallibility of sense experience.

To see how a fallibilist a priori applies in mathematics, let’s accept, for the purposes of
argument, that we have some beliefs which are held a priori.  Among those beliefs, let’s say, are some
mathematical propositions, for example the Euclid-Euler theorem that every even perfect number is of
the form 2p-1(2p-1) where 2p-1 is prime.  The ways in which we can learn about the Euclid-Euler theorem
include a variety of sense experiences: reading words and symbols on a page, say, or hearing discussions
of the theorem.  These experiences are irrelevant to the justification of the theorem which depends only
and essentially on the production of a proof.  If we believe the theorem without understanding a proof of
it, perhaps on the basis of some testimony, then our belief is only as secure as the relevant testimony and
the proof behind it.

The nature of mathematical proof is a deep and fecund question.  Some proofs are derivations
from axioms in an accepted deductive system.  These are rare; it took Whitehead and Russell nearly 400
pages to prove that 1+1=2 in the Principia.  Most proofs that mathematicians read or construct contain a
wide variety of shortcuts and implicit lemmas.  Indeed, mathematical training is, in significant part, an
education in which lemmas must be proven and which may be assumed.  Perhaps we assume that all
lemmas could be traced back to initial axioms.  Still, such derivations leave open the status of the axioms
themselves.  As many philosophers and mathematicians have noted, we choose axioms and rules of
inference on the basis of the theorems they yield.  Other proofs may invoke pictures, either as
supplemental to deductive inference or with a more-central role.6

However we may answer the question of the nature of mathematical proof, it will involve
grasping both the content of a mathematical theorem and its relation to other mathematical propositions. 

6  Proofs with an exclusively central role for diagrams are often called proofs without words.  See
Nelson 1993 and Nelson 2001 which collect instances of the regular feature on proofs without words
from The Mathematics Magazine published by the MAA.  See also Brown 2008: Chapter 9 for a
discussion of the role of diagrams in mathematical reasoning.  
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These processes, on the assumption that there are a priori justifications of any beliefs, are the kinds
which would qualify as a priori.  But there is no reason to infer that grasping the content of a theorem
and its relation to other theorems must be infallibly secure.  Such reasoning is a priori because it is
independent of sense experience and is ceded only on the basis of further a priori considerations.  In
other words, we might hold a false proposition a priori.

Among false propositions most plausibly held a priori, for example, is an unrestricted set-
theoretic axiom of comprehension: every well-defined property determines a set of things that have that
property.  When we first hear the axiom, it appears, to many of us, to be true.  Further a priori reasoning
shows that the axiom of comprehension leads to the inconsistency first noticed by Russell: there is no set
that has the property of containing all and only sets which do not contain themselves.  Thus, a priori
reasoning is not infallible.  Because beliefs which are justified a priori are independent of experience, we
do not cede such beliefs on the basis of empirical evidence.  But as long as reasoning may proceed a
priori, we can err and correct errors among our a priori reasoning.

Still, it may not be clear that removing the infallibility condition on ascriptions of apriority will
mitigate worries about a naturalistic account of apriorist reasoning.  As I expressed the worry, the
opponent of apriorism is concerned that such reasoning, if the product of merely evolutionary forces,
may not track truth.  Recent psychological evidence shows convincingly that people often think and
behave in ways that psychologists and behavioral economists and some philosophers describe as
irrational.7  Irrational behavior, though, would only be a problem for the fallibilist apriorist in
mathematics if it were based on a priori mathematical reasoning.  People do infer erroneously, especially
when using statistics.  But even to call an inference erroneous is to assert that there is a correct inference,
a standard against which the erroneous inference may be measured.  Popular disregard for mathematical
inferences is no reason to worry that mathematics itself is fallacious.

The real worry about the reliability of mathematical reasoning for the apriorist is more global. 
Suppose that arithmetic were shown to be inconsistent.  We might, parallel to the case of an unrestricted
axiom of comprehension, be able to cede some portion of our arithmetic in order to restore consistency. 
But if our best, most secure mathematical theories turned out to be inconsistent, our claims to their
apriority might seem hollow: what good is apriority if our theories turn out to be so insecure?

No one really thinks that our best mathematical theories are liable to turn out inconsistent.  Such
a discovery would undermine most philosophy of mathematics as well as mathematics proper.  More
importantly, the point of defending a priori reasoning in mathematics, whether in the guise of a thin
ability to recognize consistency or in a more robust mathematical intuition, is not to achieve some goal. 
The point of defending a priori reasoning in mathematics is that it best represents the ways in which we
practice mathematics and the actual differences between empirical science and mathematics.

§3.4: No Access Problem
My first response to the concern about access to mathematical objects was that the worry about

access is overstated, largely because our ontological commitments do not depend on access.  Our
ontology is best seen in our best theories; what exists is what our best theories say exists.  Mathematical
objects are posited as the subjects of mathematical theories which are known on the basis of fallibilist a
priori reasoning, reasoning which is justifiable given a properly humble (and transcendental) approach to
epistemology.

My second response to the worry about access to mathematical objects is that it is ancillary to the
central questions of this book.  We should be able to compare the various responses to Benacerraf’s

7 Work on the topic is legion.  See Kahneman et al. 1982, Gilovich 1991, Stein 1996, and Ariely
2008 among many others.
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dilemma, both those (like fictionalism) which embrace the epistemic horn and those (like autonomy
platonism) which embrace the ontological horn.  In recent philosophy of mathematics, focus on the
ontological horn has been mainly and errantly on indispensability platonism.  This book is an attempt to
re-focus philosophers of mathematics on what I take to be a more plausible version of platonism.  I wish
at least to make it clear, as we balance our desires for an intuitively-pleasing ontology with a
scientifically respectable epistemology, that autonomy platonism is a better option than its
indispensabilist cousin.  If access is a worry for one version of platonism, it will be a worry for the other,
and so not a reason for choosing one over the other.

The access worry motivates anti-platonist views like those of the fictionalist and the modal
reinterpreter.  Insofar as this book is an attempt to contrast two versions of platonism, the so-called
access problem and anti-platonism are irrelevant.  But insofar as criteria for a good platonist view include
an ability to answer anti-platonist criticisms, a solution or dissolution of the access problem is essential. 
I return to the topics of access and ontology both in my introductory comments on autonomy platonism,
later in this chapter, and, in more depth, in Chapter 9.

§4: Platonistic Responses to Benacerraf’s Dilemma
The first two kinds of responses to Benacerraf’s dilemma, fictionalism and reinterpretation, are

anti-platonist views.  The remaining two kinds of responses are platonist.  They are distinguishable by
their epistemologies.  Indispensability platonism (IP) is the view that our mathematical beliefs are
justified by their uses in scientific theory.  Autonomy platonism (AP) is the view that our mathematical
beliefs are justified independently of their applications in scientific theory.  Broadly speaking, IP is an
empiricist’s view and AP is a rationalist’s view, though the terms ‘rationalist’ and ‘empiricist’ are not
very useful and not all versions of autonomy platonism are what their proponents would call rationalist.

More informatively, IP is a reluctant platonist’s view.  The indispensabilist agrees with the
fictionalist and the reinterpreter that beliefs about abstract mathematical objects are odd and
uncomfortable.  Since, the indispensabilist argues, all of our evidence is sensory evidence, one would like
to eschew commitment to abstracta if one could.8  Principles of parsimony, essential to good theorizing,
force us at least to try to avoid mathematical references in our best theories.  If we could get away
without mathematical commitments, we should.  But, the indispensabilist argues, there’s no way to do so.

IP is rooted in the mid-twentieth-century work of Quine and Putnam.  Indeed it has been called
the Quine-Putnam argument.  Nevertheless, there are earlier hints of the argument.  For example, Frege,
arguing against formalism in the Grundgesetze, asserts that the applicability of mathematics elevates it
from a game to a science (§91).  Frege makes no claim that our knowledge of mathematics depends on
our knowledge of empirical science.9  Any platonist view which appeals to the applicability of
mathematics in science to justify our mathematical beliefs is indispensabilist in spirit.  But the
plausibility of the indispensabilist’s inference really depends on Quine’s work on the connection between
the construction of formal scientific theories and ontological commitments.   

Early in his career, Quine and Goodman 1947 attempted to show how to eliminate mathematical
ontology.  Assessing that project as a failure, Quine soon, and for the remainder of his career, defended
including mathematics in our best theories and, consequently, believing in mathematical objects. 

8 While nearly all indispensabilists would agree that all evidence is sense evidence, one might
employ an indispensability argument while admitting purely mathematical evidence in addition to
sensory evidence, as Maddy 1992 does.  Putnam also hints at a blended version of the argument.  I argue
that such appeals to purely mathematical evidence make the indispensability argument otiose in §10.1.

9 See Garavaso, 2005.
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Unfortunately, Quine never rigorously presented an indispensability argument and we have to piece one
together from the many places in which he alludes to it.

Putnam explored at least four different and incompatible philosophies of mathematics, four
different ways of dealing with the Benacerraf dilemma, in written work.  Still, his discussions of the
indispensability argument, while crediting Quine, are more carefully presented as an argument.  Putnam’s
version of the argument differs from Quine’s, though, and in ways which have been difficult for
philosophers to distinguish.  We will look at Quine’s argument in depth in Chapters 2-5 and at Putnam’s
in Chapter 6.

After Quine and Putnam, proponents of versions of the indispensability argument include
Michael Resnik and Penelope Maddy.  More recently, Mark Colyvan and Alan Baker have been working
on what they take to be a new version of the indispensability argument: the extended or explanatory
version.  Details of the different versions of the argument are the subjects of the bulk of this book.  Here,
I will characterize the argument in general form.

The following are essential characteristics of all indispensability arguments which conclude that
we should believe that mathematical objects exist.

IPC1 Evidentiary Naturalism: The job of the philosopher, as of the scientist, is exclusively to
explain or account for our sensible experience of the physical world; all evidence is
sense evidence.

IPC2 Theory Construction: In order to explain our sensible experience we construct a theory
or theories of the physical world.  We find our commitments exclusively in our best
theory or theories.

IPC3 Mathematization: Some mathematical objects are ineliminable from our best theory or
theories.

It follows from Evidentiary Naturalism that we never need to explain mathematical phenomena
for their own sake.  Using mathematical evidence to support our mathematical beliefs is acceptable
mathematical practice, says the indispensabilist.  But when it comes to asking about whether that practice
is legitimate in its own right, appeals to purely mathematical evidence beg the question.  Just as a psychic
may urge that the crystal ball tells us to believe the crystal ball, mathematicians may urge us to believe
our mathematical inferences.  To avoid such question-begging appeals, we must also seek extrinsic
justification for taking mathematical inferences seriously in a way in which we do not take the crystal
ball seriously.  Only the mathematical beliefs which are supported by this external justification, and for
the indispensabilist this means applicability in empirical science, will be legitimate.

For an example of the role of Evidentiary Naturalism, consider that some mathematicians believe
that there are surprisingly many twin primes, prime numbers, like 59 and 61, separated by two whole
numbers.  Some mathematicians have even conjectured that there are infinitely many twin primes. 
Unlike the proposition that there are infinitely many primes, the twin prime conjecture has never been
proven.  Moreover, the question of whether there are infinitely many twin primes is purely mathematical. 
It has no empirical scientific importance.  Thus, unless some application of the question whether there
are infinitely many twin primes can be discovered, the mathematical phenomenon of twin primes is not
an explanandum for the indispensabilist.  Ultimately, for the indispensabilist, the justification of any
mathematical belief must be grounded in our sense experience.

Theory Construction tells us where to look for our ontological commitments, but does not settle a
particular procedure for determining them.  Quine’s well-known method for determining ontological
commitments of a theory is ordinarily implicit in the writings of indispensabilists, as well as in the
writings of many of those who oppose the argument.  Other procedures for determining the commitments
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of our theories are possible.  Stewart Shapiro, for example, urges that we adopt a structuralist criterion.10 
Many indispensabilists either leave their methods for determining commitments obscure or implicitly
rely on Quine’s criterion.  

Mathematization is an empirical claim about the needs of theory construction.  The best
formulations of most good scientific theories invoke mathematical tools: real numbers for constants or
measurement, functions, geometry, axioms governing statistical inference.  Mathematization is an
empirical claim since it is an empirical question whether we can formulate nominalist alternatives to all
good scientific theories, including future theories.  Much has been written about Mathematization and I
will not say much about it in this book.11

Indispensability arguments portray a particular picture of the relationship between mathematics
and empirical science.  Suppose one is considering whether to believe that there are Woodin cardinals, a
type of large cardinal number.  On the one hand, axioms governing Woodin cardinals are provably
consistent with the standard axioms of ZFC set theory.  The existence of infinitely many Woodin
cardinals implies projective determinacy, an intuitively pleasing regularity property for the projective
sets absent from ZFC.  On the other hand, the axioms of ZFC alone are sufficient, and sufficiently
elegant, for all of the mathematics used in physical science.  By Theory Construction and Evidentiary
Naturalism, the indispensabilist indicates that the former, purely mathematical considerations are
irrelevant to the question of whether to believe in Woodin cardinals.  The latter considerations, whether
Woodin cardinals appear in our best theories of the physical world, are the only ones which are relevant. 
In other words, IPC1-IPC3 rule out independent, non-empirical justifications of mathematical claims. 
These considerations lead to a fourth characteristic, implicit in the others but worth noting separately.

IPC4 Subordination of Practice: Mathematical practice depends for its legitimacy on empirical
scientific practice.

Rejecting Subordination of Practice while retaining the legitimacy of mathematical practice
would entail adopting an alternate means of justification for our mathematical beliefs (viz. allowing
purely mathematical evidence for mathematical claims).  To be clear, the indispensabilist does not urge
that all mathematical claims must have some sort of direct empirical evidence in their favor before we
adopt them.  Mathematicians are, for the indispensabilist, free to practice mathematics as usual.  But
when it comes to interpreting their theories, to assigning truth values to mathematical claims or to
specifying our ontological commitments regarding mathematical propositions and practice, we must look
to see which mathematical theories, and thus which mathematical objects, are applicable to our best
scientific theories.

The characteristics IPC1-IPC4 apply to all versions of the indispensability argument and should
suffice to give a picture of the way the arguments work, especially how they attempt to avoid
Benacerraf’s dilemma.  Benacerraf’s dilemma is supposed to show that knowledge of the abstract objects
of mathematics is inconsistent with our best epistemology.  If some version of the indispensability
argument succeeds, then knowledge of mathematical objects will have been shown to be consistent with
our ordinary epistemic capacities.  Whatever our ultimately best epistemology turns out to be, it will have
to account for our knowledge of empirical science.  If mathematical knowledge is justified in the same
way, an epistemology for natural science will suffice to account for our mathematical beliefs about

10 See Shapiro 1993.

11 Burgess and Rosen 1997 elegantly compiles the most important attempts to show
Mathematization to be false.
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abstract mathematical objects.  So the allure of the argument is strong.
In contrast to the empiricist epistemology undergirding the indispensability argument, autonomy

platonism has an apriorist epistemology which appears more contentious.  Autonomy platonism derives
part of its name from Plato, obviously, but has only a loose relation to his views, mainly to the claim that
some portion of reality is non-sensible.  The views of Descartes and Leibniz are clearer antecedents,
since their epistemologies for mathematics are rationalist.  Still, the empiricist Hume’s distinction
between relations of ideas and matters of fact is more properly precedental for autonomy platonism’s
separation of mathematics and empirical science.  More recently, Gödel, who posited mathematical
intuition analogous to sense perception, can properly be called an autonomy platonist, as can Jerrold
Katz, John Burgess, Mark Balaguer, and Mark McEvoy.

Autonomy platonism, like indispensability platonism, is a family of views with a variety of
conflicting versions.  Again, we can distill the common characteristics of autonomy platonism to a
several essential characteristics.

APC1 Mathematical Evidence: There is purely mathematical evidence for mathematical claims.
Such evidence may include our recognition of inconsistency and intuitive judgments and
is independent of our sense experience.

APC2 Theory Independence: Mathematical theories are independent of empirical theories. 
Mathematical theories are true or false regardless of the nature of the physical world. 
Mathematical theories are never refuted by empirical evidence.

APC3 Independence of Practice: Mathematical methods, including proof and possibly including
intuition, are independent of empirical scientific methods.

The key idea behind APC1 is a denial of the naturalist’s claim that all experience is sense
experience.  Of course, there are sense experiences associated with any mathematical claim: we read
sentences and symbols on a page, for example.  But mathematical propositions, the claims which
mathematical sentences represent or express, are independent of any particular representation and thus of
any particular sense experience.  When we consider, say, the law of cosines for Euclidean triangles, the
evidence for the law holds whether or not there are any sensible triangles.  The law holds even though
actual physical space is non-Euclidean.  The truth of the law of cosines depends instead on its provability
from axioms for Euclidean geometry and on however we justify our beliefs in those axioms.

Theory Independence, APC2, is the claim that mathematical theories are never ceded or refuted
by empirical discoveries.  Scientists use and discard equations and formulas.  They refine their
calculations of constants and seek improvements of their models of data.  A scientist’s abandonment of a
mathematical tool is no evidence of any flaw in it, no sign of mathematical trouble.  When we
hypothesize a particular empirical model or measurement, we merely query its applicability. 
Mathematical theories are kept in the background whenever we test scientific theories and are never
considered for refutation by empirical scientists.12

APC2 is sometimes called into question by discoveries that certain mathematical theories,
presumed to apply to physical situation, are no longer applicable.  For example, after space was
discovered to be curved rather than flat, so that axioms for Lobachevskian hyperbolic geometry provide
the proper framework for the structure of physical space while flat Euclidean axioms do not, some
philosophers made the audacious claim that Euclidean geometry had been refuted by the theory of
relativity.  Similar claims have been made for the failure of the law of excluded middle from
considerations in quantum mechanics.  The autonomy platonist simply holds that in such cases, physical

12 See Sober 1993, Sober 1999, and Sober 2005 for more on how science isolates mathematics.
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scientists have found that some mathematical axioms were inapplicable to our best physical theories. 
The failure of a mathematical theory to apply to a scientific theory does not entail that there is any error
in the abandoned mathematical theories.

By claiming that mathematical evidence is independent of sense evidence, that mathematical
theories are independent of empirical theories, I adopt traditional distinction which has been called into
question.  The independence of mathematics is partially just that we can isolate mathematical theories
from empirical theories and evaluate their consistency or truth without appealing to evidence from
physics, biology, or any other empirical theory.  Such mathematical theories should be consistent with
any physical theories, as long as the physical theories themselves are consistent.  Independent of whether
space is continuous or discrete, real analysis, with its axioms of continuity, retains its plausibility.

It is difficult to state precisely how to delimit empirical evidence for a mathematical claim from
mathematical evidence for that claim.  Particular cases, though, can be easy enough to decide.  For
example, inductive evidence in favor of a mathematical hypothesis is insufficient whereas a proof is
sufficient.  Consider the inductive argument for the truth of Goldbach’s conjecture.  Goldbach’s
conjecture is that every even number greater than two can be expressed as the sum of two (odd) prime
numbers.  Relevant pairs of primes are called Goldbach pairs.  Inductive evidence in favor of Goldbach’s
conjecture is strong: as of May 26, 2013, all even numbers through 4 x 1018 have been verified to have
Goldbach pairs and all numbers through 4 x 1017 have been double-checked.13  Furthermore, the numbers
of Goldbach pairs for each even number increases with the given number and appears to have a lower
bound.  Still, despite this compelling inductive evidence, and despite the capacity of this evidence to
support our beliefs in Goldbach’s conjecture, mathematicians do not consider the theorem proven.

Indispensabilists and autonomy platonists agree that mathematical proofs are sufficient as
mathematical evidence.  But indispensabilists believe that there is a further kind of evidence for or
against a mathematical hypothesis, one that comes from the application of a mathematical theory within
science.  Until and unless a mathematical theory is invoked within a scientific theory, indispensabilists
look upon mathematical proofs as recreational, taking the term from a comment of Quine’s.14  In contrast,
the autonomy platonist denies that there is any further kind of evidence for a mathematical claim beyond
its mathematical evidence.  There is no external perspective on mathematics from which one can
distinguish the true (i.e. applied) portions from the merely recreational (i.e. unapplied) portions.

Last, APC3 is just the claim, perhaps implicit in APC1 and APC2, that mathematical theories are
methodologically independent of empirical scientific theories.  The deep question of whether scientific
theories can function without mathematical ones remains unresolved.  But even those philosophers who
believe that we can eliminate references to mathematical objects in our best scientific theories (by
eliminating purely mathematical axioms) agree that the theories which include mathematical references
are practically, and so methodologically, dependent on mathematics.  APC3 is the claim that the reverse
dependence does not hold: we need not invoke empirical theories at all in order to justify our beliefs in
our mathematical theories.

There is one small caveat to this last claim.  If we presume that our physical world is consistent
and we can show that a certain mathematical theory applies to the physical world, then we have good
reason to believe that our mathematical theory is both consistent and interesting, two important
mathematical virtues.  If a theory has a model, it is consistent, whether that model is mathematical or
physical.  So we can, in a sense, find evidence for our mathematical theories in empirical science.  But

13 See Oliveira e Silva.  Also, see Baker 2007: 70 for a graphical representation of the numbers of
Goldbach pairs and a discussion of enumerative induction in mathematics.

14 See Quine 1986 and Leng 2002.
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the importance of the physical model is just as evidence for the existence of a mathematical model.  In
the end, it’s the mathematical model which does the work.

This book is an attempt to compare and contrast the two families of views, indispensability
platonism and autonomy platonism, and defend the latter over the former.  To some platonists, this
argument will seem fruitless.  IP is often seen as contrasting with some version of nominalism, as a
leveraging argument against the nominalist.  Such an objection is fair enough; I have little to say here to
the nominalist.  I merely hope that some of what I say in defense of AP will convince all but the most
recalcitrant nominalist that it is a reasonable and defensible position.

Chapters Two through Seven of this book examine problems with various versions of IP.  Then,
in Chapters Nine and Ten, I develop a version of AP which is preferable to any version of IP.  Before we
get to the criticisms of IP, I’ll sketch autonomy platonism in a bit more detail so that the contrast can be
clear along the way.

§5: Autonomy Platonism: Intuition
Since autonomy platonism eschews all appeals to sense experience in justifying mathematical

beliefs, proponents of autonomy platonistic views must provide an alternative account of their
justifications.  Bare appeals to the derivability of theorems from axioms are acceptable to the autonomy
platonist, but they are insufficient without an account of our knowledge of the axioms.  Simple appeals to
the immediacy and obviousness of the axioms are unsatisfying and often misleading, since some axioms
are neither immediate nor obvious.  Moreover, mathematical theories are variously axiomatizable, with
different equivalent axiomatizations having distinct virtues.  Our most secure mathematical beliefs may
not be our best axioms.  

While no plausible autonomy platonism will depend on the certainty of even obvious axioms,
some versions (indeed one I will defend) do rely on the claim that some mathematical propositions are to
be taken as secure, if defeasibly so.  Such simple of basic claims are intuitively obvious and play an
important, if not axiomatic, role in justifying our mathematical beliefs.

Since autonomy platonism is a family of views, and since the members of this family disagree
about the role of mathematical intuition in justifying our mathematical beliefs, the weakest and thus most
plausible versions of APC1-APC3 will avoid reference to intuition.  Since the versions of autonomy
platonism which do not invoke intuition are most plausible, those wary of intuition may wish to focus on
the weakest version when contrasting autonomy and indispensability platonisms.

Still, some philosophers, considering the methods of mathematics and the ways in which
mathematical theories are developed, may find appeals to mathematical intuition not only palatable, but
appealing.  Kant was perhaps the first philosopher to invoke something called intuition in his account of
mathematics.  Inspired largely by Kant’s work, the so-called mathematical intuitionists of the early
twentieth century (e.g. Brouwer, Heyting) also relied on a concept of intuition derived from that which
appears in Kant’s work, as does, more recently, Parsons.

By ‘intuition’, Kant means something particular to his epistemology: our cognitive faculty of
receiving unconceptualized content.  For Kant, we develop mathematics by reflecting on our pure forms
of intuition, space (for geometry) and time (for arithmetic, which also requires spatial intuition).  Here is
Kant characterizing intuition and describing a mathematician’s construction of mathematical objects in
intuition:

The determination of an intuition a priori in space (figure), the division of time (duration), or
even just the knowledge of the universal element in the synthesis of one and the same thing in
time and space, and the magnitude of an intuition that is thereby generated (number), - all this is
the work of reason through construction of concepts, and is called mathematical (Critique A723-
4/B751-2).
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Let the geometrician take up [the questions of what relation the sum of a triangle’s angles bears
to a right angle].  He at once begins by constructing a triangle.  Since he knows that the sum of
two right angles is exactly equal to the sum of all the adjacent angles which can be constructed
from a single point on a straight line, he prolongs one side of his triangle and obtains two
adjacent angles, which together are equal to two right angles.  He then divides the external angle
by drawing a line parallel to the opposite side of the triangle, and observes that he has thus
obtained an external adjacent angle which is equal to an internal angle - and so on.  In this
fashion, though a chain of inference guided throughout by intuition, he arrives at a fully evident
and universally valid solution of the problem (Critique A716-7/B744-5).

Such invocations of intuition, whether by Kant or by more recent philosophers inspired by Kant,
are in the service of a conceptualist account of mathematics.  Conceptualism is the view that
mathematical propositions are not discovered but constructed in thought.  On conceptualism,
mathematical objects are really mental objects.  Such a view would best be classified as reinterpretive,
taking references to mathematical objects to be references to mental acts or constructions.  Such uses of
‘intuition’ in mathematics are not compatible with the ontological thesis of autonomy platonism, PO.  For
the autonomy platonist who countenances it, mathematical intuition is a capacity for acquiring, a priori,
beliefs about non-sensible abstract objects.  I will not consider Kantian, conceptualist intuition further.

Gödel famously characterized a version of mathematical intuition which is consistent with PO,
taking it on analogy with perception: a non-inferential awareness, grasping, or understanding.

[D]espite their remoteness from sense experience, we do have something like a perception also of
the objects of set theory, as is seen from the fact that the axioms force themselves upon us as
being true.  I don’t see any reason why we should have less confidence in this kind of perception,
i.e. in mathematical intuition, than in sense perception, which induces us to build up physical
theories and to expect that future sense perceptions will agree with them, and, moreover, to
believe that a question not decidable now has meaning and may be decided in the future.  The
set-theoretical paradoxes are hardly any more troublesome for mathematics than deceptions of
the senses are for physics...

Evidently the “given” underlying mathematics is closely related to the abstract elements
contained in our empirical ideas.  It by no means follows, however, that the data of this second
kind, because they cannot be associated with actions of certain things upon our sense organs, are
something purely subjective, as Kant asserted (Gödel 1964: 268).

In recent years, Gödel’s view has been derided as incompatible with the epistemic constraints
underlying the Benacerraf problem.  Benacerraf examines Gödel’s view specifically and in detail and
concludes that any view of its type is untenable.  Field characterizes Gödel’s move as ‘desperate’.15  Still,
as I have claimed, the worry about access underlying these complaints about intuition are overstated.

While there has been very little recent work on mathematical intuition, and even less on the kind
of intuition relevant to an apriorist, as opposed to conceptualist, view, we can find a useful variety of
characterizations of philosophical intuition in recent work by Ernest Sosa, George Bealer, and others.16 
These characterizations of philosophical intuition, as a non-inferential, non-perceptual process, are all
easily adapted to cases in which an autonomy platonist might want to invoke mathematical intuition. 

15 See Field 1989: 28.

16 See §9.4 for details.
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Intuitions are immediate inclinations to belief and they take as their subjects concepts and objects,
including modal properties, which are unavailable to sense experience.  Unlike earlier platonists like
Descartes, no contemporary defender of intuition, philosophical or mathematical, claims that intuition is
infallible.  But when I have an intuition that p, it is desirable to find a theory which can accommodate p,
or to find an explanation of why that intuition is wrong but appears to be correct.

The strongest recent defender of mathematical intuition is Jerrold Katz.

In the formal sciences, it is common to refer to seeing that something is the case as “intuition”
and to take such immediate apprehension as a source of basic mathematical knowledge (Katz
1998: 43).

The notion of intuition that is relevant to our rationalist epistemology is that of an immediate, i.e.
noninferential, purely rational apprehension of the structure of an abstract object, that is, an
apprehension that involves absolutely no connection to anything concrete (ibid 44).

A satisfying theory of mathematical intuition is far from available at the moment, though
mathematicians and philosophers have a pretty good sense of when and how it is used.  The role of
intuition in forming mathematical theories is like the role of sense experience in forming empirical
scientific theories: it provides particular data points which our best theories should accommodate
maximally.  Just as not all sense experience is veridical, not all intuitive claims will turn out to be true. 
But without mathematical intuition, it seems difficult account for the ways in which our theories are
constructed.

I will not be providing a full account of intuition in this book.  My goal is to show that autonomy
platonism, a family of views which can accommodate mathematical intuition as an element of its
epistemology of mathematics, is better motivated and more desirable than indispensability platonism.  To
that end, I will return to the concept of intuition in the last chapter.  But it is important to remember that
mathematical intuition is not an essential element of autonomy platonism.

§6: Autonomy Platonism: The Question-Begging Version
In the previous section, I mentioned in passing Field’s derision, as desperate, of Gödel-Katz-style

appeals to mathematical intuition.  In this section, I want to explore Field’s complaint a bit further.
Field’s defense of fictionalism, which I take to be the most plausible anti-platonist view of

mathematics, is framed in opposition to the indispensability argument.  Field dismisses autonomy
platonism and calls indispensability platonism the only non-question-begging version of platonism (Field
1980: 4).  Field’s view, I believe, is that using mathematical evidence for the existence of mathematical
objects is objectionably circular, perhaps in the following way:

We should believe that the theorems of mathematics are true because they are intuitively
acceptable.  But we should believe that our intuitions in mathematics are reliable because they
are consistent with our mathematical theories.

The same sort of argument could hold for the psychic or astrologer.  More famously, the problem
of scriptural circularity has the same form.

Granted, it is altogether true that we must believe in God’s existence because it is taught in the
Holy Scriptures, and, conversely, that we must believe the Holy Scriptures because they have
come from God... Nonetheless, this reasoning cannot be proposed to unbelievers because they
would judge it to be circular (Descartes, Letter of Dedication).
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Thus the accusation that autonomy platonism is question-begging is related to an accusation of
mysterianism or theology.  In all such cases, without some sort of external grounding, for example in
sense experience, the evidence and the theories seem dangerously closely related.  Just as we should not
believe the psychic’s entreaties to believe the psychic, we should not accept, without further grounds,
mathematical evidence for mathematics.

Katz argues that such objections confuse mysterianism with philosophical puzzlement.  The
nature of mathematical intuition and the source and justification of our mathematical intuition is an
unanswered philosophical puzzle.  For answers regarding the source of intuition, we look toward
neuroscience.  For answers regarding their justificatory status, we look toward philosophical theories of
mathematics.  But to claim that intuition is inherently mysterious is to overstate the problem.

More importantly, no philosopher wants to commit a logical fallacy, as begging the question
seems to be.  The philosopher of mathematics who embraces autonomy platonism is liable to that sort of
accusation.  Nevertheless, and despite the problems with the circularity underlying the inferences of both
the psychic and the theist, I believe that the autonomy platonist should embrace the circularity inherent in
the view.  Not all circles are vicious circles.

Autonomy platonism is question-begging in the sense that the autonomy platonist believes that
mathematical evidence supports our beliefs about mathematical claims and that no sort of empirical
evidence can weigh either for or against mathematical claims.  The independence of mathematical
theories from empirical theories, a central thesis of autonomy platonism (APC1), entails that the
justifications of mathematical theories are not found in empirical evidence or theories.  We believe that
‘7+5=12’ is true in part because we believe that it follows from the Dedekind/Peano axioms of
arithmetic.  But we also believe the Peano axioms in part because they yield true propositions of
arithmetic, e.g. that seven plus five is twelve.  Field’s view, and the view of many other anti-platonists, is
that mathematical evidence for the truth of mathematical propositions is insufficient.  That’s why Field
claims that indispensability platonism is non-question-begging: the evidence for mathematical
propositions is, according to the indispensabilist, either directly or indirectly empirical, like all other
evidence.

A parallel accusation of circularity can be levied against the empiricist: we believe that there are
trees in part because our senses tell us that there are trees.  We believe that sense experience is accurate
in part because it tells us that there are things like trees, which we take as manifest.  If mathematical
evidence is insufficient to support our beliefs in the truth of mathematical theories, then sense evidence is
insufficient to support our beliefs in the truth of empirical theories.17  The accusation of circularity, as we
are considering it, is supposed, by Field and others, to hold against the autonomy platonist and not the
indispensability platonist.  Such an accusation can hold only if we have non-question-begging
justifications for our empirical theories.

The obvious response to the charge of circularity for empirical theories is to claim that the
evidence of sense experience is somehow basic or secure from error.  The logical empiricists, for
example, tried to ground all scientific theories in the evidence of foundational sense data.  Since, they
believed, sense experience has a special status and is secure from error, unlike mathematical intuition,
say, we can build our theories on their foundations without worries about circularity.  But such projects,
like that of Carnap’s Aufbau, do not appear to succeed.

One problem with logical empiricism is that it takes observations as evidence when the very
notion of an observation is laden with theory.  As Quine observed, any particular claim can be held as
true, even if it is inconsistent with our other beliefs, as long as we make appropriate adjustments to our

17 A scientific anti-realist could consistently hold that there is a circularity problem for
mathematics but not for empirical science.  But scientific anti-realism is another topic for another place.
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background theory.  Quine thus showed that confirmation holism better depicts the relations among
theories and observations than the logical empiricist’s dogma of reductionism.  On Quine’s holism, we
start our theorizing with the tentative evidence of sense experience.  As we add experiences, we construct
increasingly plausible theories to account for them.  We balance our tentative observations with our
tentative theories, working in both directions to formulate the most attractive, comprehensive,
conservative, and powerful system of beliefs that we can.  We use our evidence to support our theories
and we use our theories to judge and predict our evidence.  As Quine realized, to deny the legitimacy of
sense experience because of the circularity of such reasoning is self-defeating skepticism.  Sense
evidence is good, if not infallible, evidence.  One can not defend appeals to sense evidence against the
skeptic, but such worries are merely academic.

The autonomy platonist believes that mathematical evidence, like sense experience, is good, if
not infallible, evidence.  Parallel to empirical science, we begin our mathematical reasoning with some
simple and particular mathematical claims: simple claims of arithmetic, including counting; basic
geometric facts; rudimentary set-theoretic observations.  We organize and regiment our basic claims,
perhaps tracing them to some systematic sets of axioms which yields the desired theorems.  We find
some unifying claims among the various theories, set-theoretic (or category-theoretic) reductions, say. 
We judge our axioms by their yield and the particular claims by their relations to the axioms.18

Field and others accuse the autonomy platonist of circularity.  But as Quine shows, not all circles
are vicious circles.  Quine’s holism, perhaps the most plausible account of empiricist epistemology, has
the same kind of circularity as autonomy platonism and is no less plausible for it.  What separates the
autonomy platonist from the indispensability platonism is the not form of argument, not the circularity of
the epistemology, but the question of the nature of mathematical evidence.  For the indispensabilist, all
evidence is sense evidence.  For the autonomy platonist, purely mathematical evidence is no less secure,
no less reliable, and no less respectable.

I will return to a more detailed defense of the circularity inherent in autonomy platonism in
Chapter Ten.  For now, I just want to say that the autonomy platonist is going to have to learn to live with
the charge of circularity.  It is the price of autonomy.

§7: Autonomy, Access, and Application
Anti-platonist responses to the Benacerraf problem are motivated largely by concerns about

access to mathematical objects.  As I argued in §3, I do not think that the access problem is a serious
worry.  The important question for the platonist is not, as some critics seem to think, whether we have
causal (or other) contact with mathematical objects.  The important question is whether we can have
some account of the applications of mathematics to the physical world.  Given the independence of
mathematical theories from empirical theories and the causal isolation of abstract mathematical objects, it
seems surprising to many people that mathematics has the kind of application in empirical theories that it
does.  Earlier, I promised a positive account of an epistemology for abstract objects which does not
depend on contact with those objects.  Let’s take a moment to see a sketch of that epistemology and how
it leads away from the problem of access and toward the problem of application.

The access problem is a general worry about how we know about anything at all.  It seems easy
enough to explain our access to the ordinary objects in front of us, like trees and tables.  We just open our
eyes or reach out our hands.  But those objects are composed of smaller objects, say carbon atoms, to
which our access requires explanation.  Or perhaps the atoms (or quarks or strings) are what we directly
observe while our access to trees and tables requires explanation.  The mere claim that sense experience
provides access to objects does not fairly settle the question of what exactly we are observing in sense

18 Bertrand Russell noted this phenomenon early; see §9.5.
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experience.  Even if we believe that the world exists independently of our experiences of the world, as
we should, what we consider to be the objects of our direct experience depends largely on how we
conceptualize the world, on how we carve it up.

The access problem, in its most general form, is a demand to connect the objects we take as
directly perceived, whatever they are, with the ones whose existence we infer.  We can, very roughly,
divide our ontological commitments into three groups.  In the first group are ordinary objects like trees
and tables.  In the second group are the theoretical posits that are causally or compositionally related to
ordinary objects, like electrons.  In the third group are mathematical objects.  There might be objects
which do not clearly belong to any of the three groups, but let’s put those aside for the moment and
notice that there are two distinct ways of responding to the access problem for any object.

We begin our epistemic reasoning with strong (if defeasible) commitments to the objects in the
first group.  As we learn more about the world, we discover that our claims about the world are made
more powerful and uniform when we appeal to objects in the second group.  As we reflect on our claims
about the world, we notice that we appeal to objects of the third group.  We know that there are trees; we
discover that they are made of carbon atoms (and other stuff); we use mathematical tools to represent our
best theories about trees and their atoms.  Still, our original commitments are to the objects of the first
group and we don’t appear to have direct knowledge of the objects of either the second or third groups. 
So, we tell some sort of story about the relations among the objects of the three groups.  Two ways of
responding to the access problem are two different kinds of stories we can tell about our beliefs about
objects in the second and third groups.

The first kind of story appeals to the causal or constitutive relations between objects of the
second group and objects of the first: trees are made of atoms; we know about the trees; so we have
knowledge of the atoms.  Philosophers who favor eleatic principles of ontological commitment tend to
invoke stories of this first kind.  Eleatic principles are claims that, approximately, only causally active
entities exist.  On this view, our access to electrons is explicable in terms of our access to ordinary
objects.  Our knowledge of objects of the second group is derivative from our knowledge of objects of
the first group.

But stories of composition and constitution are unavailable for the objects of the third kind.  We
can not derive knowledge of mathematical objects from their constitutive relations to ordinary objects. 
Trees aren’t made of mathematical objects even if we use mathematics to formulate our best scientific
theories.  Thus, those who invoke causal or constitutive relations among trees and atoms to explain our
knowledge of atoms are left with an insoluble puzzle about our knowledge of mathematics.  Some
philosophers thus go on to deny the existence of mathematical objects.

The second kind of story, in contrast, makes ontological commitment homogeneous: all of our
commitments are made together as a unified account of our sense experience.  First, we have some
experiences.  We organize and systematize these experiences into an attractive, explanatory theory. 
Lastly, we interpret the claims of that theory to determine our ontology.  This second kind of story should
be familiar to those who know Quine’s work.  It is at the core of the indispensability argument.

Notice that such stories make the posits of the objects of all three groups equal.  The lack of
causal contact or constitutive relations between trees and electrons, on the one hand, and mathematical
objects, on the other, is completely moot.  There is no access problem for mathematical objects on the
second kind of story.

All perception involves both the physical impact of the world on our sense organs and the
processing and construction of an experience based on that sensory input.  The fantasy of a simple,
unmediated experience, a sense datum, is a myth.  Once we discard the fiction of a pure sense datum,
once we recognize that our conscious experiences are mediated by the conceptual schemes with which
we meet the world, the access problem takes on a new appearance.  Quine’s deep insight in “Two
Dogmas of Empiricism” and elsewhere is that ontological commitment is a matter of how one fits
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together the stimulation of our sense organs with the construction of our theories about the world.  The
access problem, seen in a post-Two-Dogmas light, dissolves.

Once we see, properly, that ontological commitment is a product of this interaction, the problems
of access to sub-visible objects like atoms disappears and the traditional access problem for mathematical
objects goes with it.

In place of the access problem, though, is a different pressing question: If mathematical objects
are not causally or constitutively or compositionally connected to ordinary objects, why are they so
useful, even essential, for our theories of our sense experience of those objects?  We understand clearly
the connections between atoms and trees;  the Quinean doesn’t throw out the causal or constitutive
stories when discarding the first kind of story.  To deny the eleatic’s principles by seeing ontological
commitment as a homogeneous product of theory construction is not to deny the facts about the ways in
which the world is put together.

The connection between, say, real numbers and trees is less well-understood.  If mathematical
theories were completely independent of empirical science, their applicability to science, most
prominently as tools for expressing scientific ideas precisely and as devices for measurement, would be a
mystery.  The access problem is replaced by a problem of application.

The problem of application is simply Wigner’s question: How can we account for the
unreasonable effectiveness of mathematics in physical theories?19  When scientists model physical
phenomena, mathematical devices for all their needs are available.  Where they are not, they can be
developed.  Moreover, mathematical theories which seem unconnected to science have an uncanny way
of finding applications.  Complex numbers, widely used in electronics, fluid dynamics, and engineering,
were variously labeled imaginary, fictitious, and impossible.  They have become invaluable tools despite
resistance from even those who developed theories of complex numbers.

The Wignerian problem of application, of explaining why objects which are not constitutive of or
causally connected to the physical world are so useful in science, can easily be confused with the access
problem.  But it is a different problem and the solution to it has different parameters.  Attempts to solve
the access problem for mathematical objects are quixotic.  Attempts to solve the problem of application
are more tractable.

The most useful way of showing that the problem of application is tractable is to present a
solution to the problem that is as broadly acceptable as possible.  I can do no better than appeal to the
solution presented by Mark Balaguer, which he calls variously the representational account or the
theoretical apparatus account.  Balaguer’s solution is simple: mathematics provides a framework for any
possible physical situation.  

The only reason it might seem surprising that mathematics can be used to set up a descriptive
framework, or theoretical apparatus, in which to do empirical science is that this seems to
suggest that there is an inexplicable correlation between the mathematical realm and the physical
world.  But within FBP, this illusion evaporates: the mathematical realm is so robust that it
provides an apparatus for all situations.  That is, no matter how the physical world worked, there
would be a mathematical theory that truly described part of the mathematical realm and that
could be used to help us do empirical science (Balaguer 1998: 143).

On Balaguer’s view, any consistent mathematical theory truly describes some mathematical
universe.  There is no mystery about why mathematical theories apply to our world since mathematical
theories apply to all possible worlds.  Do you want to model mereological sums?  There’s a mathematical

19 See Wigner 1960.  For more recent discussion of the phenomenon see Baker 2001: §2.2.
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application for that.  Do you want a way to represent the location relations among physical objects? 
There’s an app for that too.  Do you want to model market fluctuations, or properties of quantum
particles, or the various possibilities of some physical event’s occurrence?  There are apps for all of those
as well.

Moreover, the plenitude of mathematical theories entails that there are more mathematical tools
than can be applied in scientific theory.  It may seem surprising that a mathematical theory, previously
uninteresting to scientists, can suddenly become essential for their work.  But the structural or abstract
properties of any and every physical situation are mathematically describable.  Many mathematical
theories are never applied because there are so many.  Once we appreciate the vast number of
mathematical theories which are never applied in scientific theory, the surprise dissipates.

We may be misled by simple mathematical models and their applicability in empirical science
into thinking that there is something fundamentally Pythagorean about the world, something particularly
mathematical about our physical universe.  But the abstractness and generality of mathematics entails
that this mystery is overstated.  Consider, for example, Bode’s purported law of planetary distances.  In
the late eighteenth century, Bode, influenced by some earlier astronomical observations, hypothesized a
simple mathematical law governing the relative distances of the planets from the sun.  

Let the distance from the Sun to Saturn be taken as 100, then Mercury is separated by 4 such
parts from the Sun. Venus is 4+3=7. The Earth 4+6=10. Mars 4+12=16. Now comes a gap in this
so orderly progression. After Mars there follows a space of 4+24=28 parts, in which no planet
has yet been seen. Can one believe that the Founder of the universe had left this space empty?
Certainly not. From here we come to the distance of Jupiter by 4+48=52 parts, and finally to that
of Saturn by 4+96=100 parts (Bode, in Jaki 1972: 1015).

The gap between Mars and Jupiter was temporarily considered to be filled by the dwarf planet/
asteroid Ceres, as astronomers motivated by Bode’s reasoning attempted to replace the lacuna.  Further
evidence of Bode’s law was supplied by the discoveries of Uranus and Pluto, which fit the sequence at
least approximately.  Neptune, which is not even close to the location Bode’s law predicts, was a
contravening datum, one which led astronomers to abandon the so-called law.  

If one focuses on the fact that there are mathematical tools for all empirical scientific needs
without recognizing the many tools which are unapplied, one might be surprised by the applicability of
mathematics.  Bode’s law invoked a simple arithmetic sequence.  That arithmetic sequence turned out to
be inapplicable in this case. Many arithmetic sequences are inapplicable in this case.  That there might be
a mathematical tool to describe the relative positions of the planets should not be surprising because
there are so many mathematical tools.  

Reflection on the broad availability of mathematical theories should dissuade us that any account
of application beyond that provided by Balaguer is required.  Mathematics has far too many tools for us
to believe that there is something particularly surprising or unreasonable about the effective applications
of mathematics in empirical science.

Moreover, the fact that general principles of theory construction apply to mathematical and
empirical theories in similar ways also contributes to the explanation of the applicability of mathematics. 
In both domains, we look to simple, elegant, unifying principles.  The structure of our best formulations
of scientific theories may appeal to simple, elegant, and unifying mathematical theories.

Alan Baker discusses, in this vein, Hamilton’s discovery and development of theories of
quarternions as a four-dimensional extension of the complex numbers.20  Quarternions could be used in

20 See Baker 2001: §2.3.
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lieu of Cartesian coordinates, and more elegantly, so they had particular application to physical theories.
But quarternions were shown to be less powerful and elegant than other theories, in both

mathematics and physics.  In mathematics, the development of theories of quarternions was a useful
stepping stone to more general, more elegant algebraic structures and to more general, more elegant
vectorial systems.  In physics, Maxwell’s equations, Baker reports, are formulated as eight equations
using quarternions of Cartesian components, but as four using vectors and even two using tensors.  So
there were parallel considerations in opposition to the adoption of quarternions in both domains.

Balaguer’s theoretical apparatuses account of the applicability of mathematics is especially
useful because it is compatible with a range of views about the ontology of mathematics.  The fictionalist
can use it, with the proviso that the mathematical references are not to be taken seriously.  Indeed,
contemporary fictionalists like Melia and Leng implicitly or explicitly adopt Balaguer’s view.  The
autonomy platonist can employ Balaguer’s view too, with the belief that some mathematical theories are
true.  Reinterpreters and indispensability platonists can also use Balaguer’s account, since the references
of mathematical terms and our justifications for believing mathematical propositions are irrelevant to the
uses of mathematical theories as tools for representation.

Since the problem of access is dissolved by recognition that our commitments are not determined
by a simplistic empiricist account of sensory experience and the problem of application is easily solved
by Balaguer’s plenitudinous account, it might seem that there are no major epistemological challenges to
autonomy platonism.  In a sense, that’s how it should be.  Mathematics is the most secure and eternal of
disciplines.  The view that there is a major epistemological problem with mathematics is an academic
philosopher’s construct, in the most pejorative sense.  But there are two serious, if less-foundational,
worries about mathematical epistemology that are worth study.

First, since Balaguer’s account of application is consistent with a wide variety of mathematical
epistemologies, it does not determine how to think about our knowledge of mathematics.  In particular,
here, it does not help us discriminate between indispensability platonism and autonomy platonism,
between taking our mathematical beliefs to be justified by their utility to science or by purely
mathematical evidence.  The indispensabilist and the autonomy platonist agree that the access problem is
moot and can both adapt Balaguer’s account of application, which is independent of Balaguer’s
plenitudinous platonist account of the justification of our mathematical beliefs.  So the question of
justification remains open.

Second, and related, there are open questions within mathematics which have epistemological
importance.  For example, we don’t know the proper axioms for set theory.  Many large cardinal axioms,
consistent extensions of ZFC carrying existential import, have been proposed.  The proper methods for
determining which axioms to adopt are not clear.21  For another example, the role of category theory in
providing a foundation for mathematics alternative to set theory is an open question and has ramifications
for how we think about mathematics, ultimately.  These questions are major, in that they will determine
mathematical ontology.  At least some of these questions seem to be answerable; we can at least make
progress toward answering them.  But answers will not come via the indispensability argument nor via a
defense of autonomy platonism.  Such questions are, rather, to be engaged independently of the questions
of mathematical epistemology on which this book focuses.

I hope that the foregoing three sections suffice to characterize AP and distinguish this family of
views from IP, its rival platonistic response to Benacerraf’s dilemma.  I’ll return to a more-detailed
discussion of autonomy platonism in Chapters Nine and Ten, after examining a variety of versions of the
indispensability argument.

21 See Maddy 1988a and 1988b.



Chapter Two: The Quinean Indispensability Argument

Indispensability arguments are indirect justifications for beliefs.  An indispensability argument
concludes that we should believe in some thing or claim because that belief follows from some prior or
more secure beliefs.  In the philosophy of mathematics, the term has become attached to a particular kind
of argument, one which concludes that we should believe in the existence of mathematical objects, or in
the truth of some mathematical theories, on the basis of their uses in the construction of empirical
theories.

Even this specific use of the term does not determine the precise nature of the argument.  In the
next six chapters of this book, I characterize, distinguish, and evaluate three different versions of the
indispensability argument in the philosophy of mathematics.  Chapters Two through Five concern what I
will call the Quinean argument and its derivatives.  Chapter Six is about what I will call the Putnamian
argument and its derivatives.22  In Chapter Seven, I discuss the new explanatory indispensability
argument, sometimes known as the enhanced argument.

§1: Quine’s Argument
Quine does not present a detailed indispensability argument, though he alludes to one in many

places.23  I first present a concise version of the argument.  Then I proceed to discuss Quine’s defenses of
each premise.  The focus of my discussion is how the argument relies on various aspects of Quine’s
broader methodology, especially his naturalism, his confirmation holism, and his procedure for
determining ontological commitment.  Each of these presumptions is central to Quine’s work but
contentious, especially from the point of view of the autonomy platonist.

My exposition of Quine’s argument is both exegetical and revisionary and I have tried to achieve
a difficult balance between the two.  On the one hand, I have tried to be as faithful to Quine’s views as I
can, given that he never presented the argument in careful detail.  But I also look toward the most
charitable way to regiment the argument, to interpret it in its strongest sense.  I believe that my version of
Quine’s argument represents his central intentions in the matter.  But even Quine, whose central
doctrines can be found in his earliest works and who did not shift his views radically through his career,
did alter at least his emphasis on several key topics, including the question of whether mathematical
claims have empirical content.24  It might be best to call the argument Quinean rather than Quine’s, but I
beg the reader’s forgiveness if I do not mark a strict distinction between the two.

The Quinean indispensability argument can be stated rather simply: 

QI QI1. We should believe the theory which best accounts for our sense experience.
QI2. If we believe a theory, we must believe in its ontological commitments.
QI3. The ontological commitments of any theory are the objects over which that theory

first-order quantifies.
QI4. The theory which best accounts for our sense experience quantifies over

mathematical objects.
QIC. We should believe that mathematical objects exist.

22 Many philosophers do not distinguish the Quinean and Putnamian arguments.  Melia 2000:
455-6 makes a slightly different distinction between them than I do.

23 For examples, see Quines 1939, 1948, 1951, 1955, 1958, 1960, 1978, and 1986a.

24 “No mathematical sentence has empirical content, nor does any set of them” (Quine 1995b:
53).  For a discussion of Quine’s odd shifts in view about mathematics in his latest works, see Isaacson
2006: §4.
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The conclusion of the Quinean indispensability argument is thus that many of our mathematical
beliefs are justified by the security of the empirical science at the core of our best theory of the world. 
We are justified in believing literally in some mathematical claims which refer to mathematical objects. 
QI does not indicate which mathematical claims we are justified in believing; that is a matter for
empirical scientists, ones who preside over the construction of our best theories, to decide.

While it is obvious that scientists use mathematics in developing their theories, it is not obvious
why the uses of mathematics in science should lead us to believe in the existence of abstract objects.  For
example, when we study the interactions of charged particles, we rely on Coulomb’s Law, which states
that the electromagnetic force between two charged particles is proportional to the charges on the
particles and, inversely, to the distance between them.

CL  F = k *q1q2*/ r
2 , where the electrostatic constant k . 9 x 109 Nm2/c2

CL refers to a real number, k, and employs mathematical functions like multiplication and
absolute value.  Still, we use Coulomb’s Law to study charged particles, not to study mathematical
objects, which have no effect on those particles.  The plausibility of Quine’s indispensability argument
thus depends on both Quine’s claim that the evidence for our scientific theories transfers to the
mathematical elements of those theories, which is implicit in QI1, and his method for determining the
ontic commitments of our theories at QI3 and QI4.  The method underlying Quine’s argument involves
gathering our physical laws and writing them in a canonical language of first-order logic.  The
commitments of this formal theory may be found by examining its quantifications.

§2: Naturalism and A Best Theory
The first premise of QI is that we should believe the theory which best accounts for our sense

experience, i.e. we should believe our best scientific theory.  Quine’s belief that we should defer
questions about what exists to natural science is an expression of his naturalism.  Quine describes
naturalism as, “[A]bandonment of the goal of a first philosophy.  It sees natural science as an inquiry into
reality, fallible and corrigible but not answerable to any supra-scientific tribunal, and not in need of any
justification beyond observation and the hypothetico-deductive method” (Quine 1981: 72).

Quine contrasts his naturalism, which he sometimes calls relative empiricism, to the so-called
radical empiricism of the logical empiricists.  Logical empiricists presume that any claim, to be justified,
must be reducible to (or perhaps expressible, in principle, as) claims about sense data.  Since we know
our own sense data securely, even infallibly, they say, proper combinations of and inferences from them,
using the tools of mathematical logic, can be known just as surely.  Scientific theories are, for the logical
empiricists, just complex representations of sense experiences.

Instead of starting with the presumption of the security of sense data and trying to show how to
construct theories of the world from them, Quine assumes that ordinary objects exist and that empirical
science is our best account of our sense experience of them.  The job of the epistemologist, for the
naturalist, is not to justify knowledge of either ordinary objects or scientific theory by tracing complex
claims to their purportedly simplest roots in our sense data.  The job of the epistemologist is mainly to
describe the path from stimulus to science.

Quine’s rejection of the logical empiricist’s reductionist, or foundationalist, view is central to his
indispensability argument, to his claim that mathematical beliefs are justified and his depiction of how
they are justified.  For the logical empiricist, there is no hope of reducing mathematical claims to sense
experience; we have no experiences of mathematical objects.  The logical empiricist may thus resort to
calling mathematical claims contentless or even nonsensical.  Quine’s approach, in contrast, allows for
mathematical beliefs by rejecting any requirement for individual reductions of scientific claims to sense
data.  Mathematical claims, like any claims, are justified by their roles in a broad theory of the world, not
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by any particular individual experiences.
Quine thus integrates his account of mathematics with that of empirical science.  He does not

demand that mathematical claims be justified by individual confirming experiences.  He only requires
that the justifications of our scientific theory, taken as a whole, be empirical.  In part, he rejects the
logical empiricist’s project on its own demerits, the impossibility of actually tracing the course from what
appears to us in raw experience to the general and abstract claims of empirical science.  More
importantly, Quine rejects logical empiricism on the basis of his insight that we can adjust any theory to
accommodate any evidence.  The logical empiricist describes a system of piecemeal theory construction,
where particular claims are each independently assessed with regard to our individual experiences.  In
contrast, Quine defends the view that there are no justifications for particular claims independent of the
justification of our entire best theory, a claim which has come to be known as confirmation holism.

§2.1: Holism
Confirmation holism is essentially just the uncontroversial observation that any sentence s can be

assimilated without contradiction to any theory T, as long as give up any sentences of T that conflict with
s.  Such changes may entail further adjustments and the resultant theory may in the end look quite
different than it did before we accommodated s.  But we can, as a matter of logic, hold on to any sentence
come what may.  Typically, we will have lots of different choices of how to accommodate s to T.  And,
we are not forced to hold on to any statement, come what may; there are no unassailable truths.

Just about any hypothesis...can be held unrefuted no matter what, by making enough adjustments
in other beliefs - though sometimes doing so requires madness. We think loosely of a hypothesis
as implying predications when, strictly speaking, the implying is done by the hypothesis together
with a supporting chorus of ill-distinguished background beliefs. It is done by the whole theory
taken together (Quine and Ullian 1978: 79).

For a simple example, suppose that I have a friend named Abigail.  I have a set of beliefs about
our relationship.  Since a theory is just a collection of sentences, we can call these beliefs a theory of my
friendship with her.  Suppose that I overhear Abigail saying mean things about me.  New evidence
conflicts with my old theory and consistency demands a resolution.  I could reject the evidence (e.g. “I
must have mis-heard”).  I could accommodate the evidence by adjusting my theory.  I might give up the
portions about Abigail being my friend.  I might cede the general principle that friends do not say mean
things about friends, either completely or by adopting a restricted version of that principle.  I might even
consider accepting the contradiction; “Do I contradict myself?  Very well, then I contradict myself”
(Whitman).  I have a range of choices about how to eliminate the new contradiction in my beliefs and no
one of those choices is immediately necessitated.  To make the choice, I have to balance a variety of
considerations, ones which affect lots of my beliefs about Abigail, about friendship, and about the
importance of avoiding contradictions.

Similarly, when astronomical evidence in the 15th and 16th centuries threatened the geocentric
model of the universe, people were faced with choices of how to respond.  The could have accepted the
evidence and given up beliefs about the Earth being at the center of the universe.  The could have found
grounds for rejecting the evidence.  They could have maintained a geocentric view by complicating the
mathematical models of the solar system.  They could have claimed that the heliocentric model was a
mere heuristic.  The new astronomical data did not itself dictate how ti would be accommodated. 
Scientists had to determine how our whole theories of the universe , and our roles in it, were best
constructed.

The confirmation holism underlying QI entails that there are no justifications for particular
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claims independent of the justifications of our entire best theory.  Since we always have various options
for restoring an inconsistent theory to consistency, our mathematical theories and our scientific theories
are linked.  Our justifications for believing in science and mathematics are not independent.  When new
evidence conflicts with our current scientific theory, we can choose to adjust scientific principles or
mathematical ones.  Evidence for the scientific theory is also evidence for the mathematics used in that
theory.

§2.2: Physicalism and Pluralism
By assuming that the theory which best accounts for our sense experience is our best scientific

theory, as opposed to, say, a theological account, Quine defers the work of determining what exists to
scientists.  Scientists naturally engage questions of the ultimate structure of the universe, whether
explicitly and directly, as in theoretical physics, or less obviously, as in psychology or biology.  Still,
‘science’ is a thin term for a broad set of endeavors.  The proponent of QI must clarify what is to be taken
as science for the purposes of determining our ontology.

QI itself makes no claims about whether science is really just physics or whether it has various,
perhaps autonomous branches (e.g. biology, neuroscience, semantics, economics).  Neither does QI make
a claim about the relationship between physics and these other branches of science.  Given the holism
underlying the indispensability argument, which entails that our best theories are essentially
interconnected, the proponent of QI must believe that there is some, perhaps quite strong, relationship
among the various branches of empirical science.  

A proponent of QI could assert a strong version of physicalism: every science is reducible to
physics.  On a version of this strong physicalism, what exists is just what our best physics says exists. 
Our best theories of physics are currently unsatisfactory.  Quantum mechanics and relativity theory, as
we understand them, seem to conflict.  But for the strong physicalist, the objects of these theories are our
best guesses about what exists.  Other objects, tables and trees and animals and mental states, are just
complex arrangements of the objects of our ontology.

Hedging, one might say that some sciences are irreducible to, but still supervene on, physics. 
Perhaps, say, mental states (the subjects of psychological sciences) are not completely explicable in
terms of the basic laws of physics though they require no further ontology than that of physics.

Even more weakly, one might deny both that the special sciences are reducible to physics and
that the ontology of our best theories of physics suffices for the explanations of every phenomenon that
might be deemed scientifically explicable.  Call scientific pluralism the position that various branches of
science (biology, neuroscience, semantics, economics, etc.) are independent of each other, in some ways,
and not reducible to physics.  The pluralist sees our best theory as some sort of amalgam of various areas
of science.  In the absence of convincing evidence for stronger theses of reducibility or supervenience, it
might be advisable for the proponent of QI to adopt scientific pluralism.

Deciding among strong physicalism, a weaker version, or even a pluralism, is important for the
proponent of QI in order to determine which theories one should examine for mathematical content.  In
places, Quine seems to adopt a kind of scientific pluralism.  He uses examples from casual discourse to
illustrate how science invokes mathematical objects.  He presents the example, from Frege, of a
set-theoretic definition of ancestor, as one of various

[O]ccasions which call quite directly for discourse about classes.  One such occasion arises when
we define ancestor in terms of parent, by Frege’s method: x is ancestor of y if x belongs to every
class which contains y and all parents of its own members.  There is this serious motive for
quantification over classes; and, to an equal degree, there is a place for singular terms which
name classes - such singular terms as ‘dogkind’ and ‘the class of Napoleon’s ancestors’ (Quine
1953: 115; see also Quine 1960: §48 and §55; and Quine 1981b: 14).
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Quine’s references to statistical generalities also make him appear pluralistic.  He countenances
groups of people rather than the collections of elementary particles.  “Classes [belong in our ontology]
too, for whenever we count things we measure a class.  If a statistical generality about populations
quantifies over numbers of people, it has to quantify also over the classes whose numbers those are”
(Quine 1981b: 14).

Even in discussions of space and time, which do seem relevant to a physicalist theory, Quine’s
examples reflect mundane applications of mathematics, rather than ones that might be used in a complete
physics.  “When we say, e.g. that four villages are so related to one another as to form the vertices of a
square, we are talking of the arithmetical relation of the distance measurements of these villages” (Quine
1974: 133).

Given the holism underlying the indispensability argument and its consequent connection of all
aspects of our best theories, there is a natural tension between QI and pluralism.  Perhaps Quine intends
talk of common uses of mathematics as merely precedental of the kind of uses that one would have in a
mature physical theory.  Despite pluralistic appearances, Quine is ordinarily taken as a physicalist of a
fairly strong kind, one who believes that our best theory will consist of the axioms of a completed
physics.  Putnam states Quine’s physicalism explicitly.  “Quine proposes to reduce logic, mathematics,
and philosophy itself to physics” (Putnam 1981d: 183).  Regarding Goodman’s pluralism of world
versions, Quine writes, “I take Goodman’s defense of it to be that there is no reasonable intermediate
point at which to end it.  I would end it after the first step: physical theory” (Quine 1978b: 98).

There are many different attitudes toward scientific theories between the strongest physicalism
and the weakest pluralism.  The question of whether to be a physicalist or a pluralist, or where in
between one falls, is most relevant to QI4.  The physicalist needs to determine whether uses of
mathematics in physical science are eliminable.  The pluralist must wonder whether one could eliminate
mathematics from a broad range of scientific theories.  

This is not the place to determine the ultimate relationship among physics and the special
sciences.  But it is important to note that QI1 requires that there be a single, ultimate theory which
comprehends and explains everything that can legitimately called science or knowledge.  The proponent
of QI can not be so pluralistic as to allow for the ontology of theories which are not strictly scientific or
relevantly connected to science.  If there were any claims that we could know which were outside the
scope of our best empirical theory, independent of our best science, mathematical claims would seem to
be among them.  If we could know mathematical claims without appeal to science, the indispensability
argument would be otiose.  We would not need indirect justification of our knowledge of mathematics
since whatever would justify our knowledge independently of scientific theory would suffice.

Such a pluralism is not Quine’s view.  But even though Quine is best seen as a physicalist, the
proponent of QI might attempt to adopt one of the weaker views, perhaps in buttressing the claim, QI4,
that the ubiquity of mathematics throughout all human endeavors should impel and justify our
mathematical beliefs.  So it is important to remember that steps away from physicalism while attempting
to maintain the indispensability argument may create a kind of instability in one’s view.  Whatever
pluralism the proponent of QI adopts, it will have to maintain the holistic connections among different
theories.

§2.3: The Aesthetics of Theory Construction
Theories are generally under-determined by evidence.  Simple examples include the fact that

evidence often provides correlation without indicating causation.  For example, a recent study shows that
Facebook users get lower grades in college.  We do not know whether to conclude that using Facebook
causes lower grades or that people who use Facebook are those who are already likely to be less
successful.

Sometimes new evidence forces us to alter our theories.  We ordinarily have choices among
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various hypotheses.  As the holist emphasizes, we can even reject the evidence and hold onto our original
theory.  Even when an observation does not conflict with previously-accepted hypotheses, there are
always conflicting theories that can accord with our claims.  Data is not categorical and can be
accommodated by a variety of theories.  Some theories can be ruled out for carrying extraneous elements. 
We discount theories that refer to ghosts, for example, and seek an explanation of the noise in the attic
which appeals only to natural phenomena, like wind or the expansion and contraction of materials due to
humidity.  We invoke principles of parsimony, or Ockham’s razor: do not multiply entities beyond
necessity.

The construction of any theory is guided by several further principles, which Quine sometimes
calls immanent virtues.  When constructing a theory, or restoring consistency to a theory in which a
contradiction has been discovered, we balance accounting for the evidence with achieving elegance in
formulation.  We try to retain as much of our prior theory as we can while accommodating new evidence
and we make our claims as weak as possible, in order that they be as defensible as possible.  Still, we
want our theories to be broad and unifying in order that they have maximal explanatory strength.

Among the immanent virtues which govern scientific reasoning generally, Quine mentions
conservatism, modesty, simplicity, generality, and refutability.  Conservatism tells us to only revise as
little as we need to, in order to maintain as much as possible of our previous theory.  We accept only the
most modest principles as the most plausible.  “The lazy world is the likely world” (Quine and Ullian
1978: 68).

Simplicity for our large theory trumps simplicity for any portion of that theory.  The claim
‘objects fall to the Earth’ is simple, but conflicts, outside our atmosphere, with gravitational theory,
which is simpler overall, and more general.  “There is a premium on simplicity in any hypothesis, but the
highest premium is on simplicity in the giant joint hypothesis that is science, or the particular science, as
a whole. We cheerfully sacrifice simplicity of a part for greater simplicity of the whole when we see a
way of doing so” (ibid: 69).

Some critics of the indispensability argument believe that the invocation of the immanent virtues
in constructing our theories leaves room for denying the argument, for denying that mathematical objects
are essential to the construction of our theories.  Debates about the argument can detour into discussions
of how virtues like simplicity or conservatism are best understood and applied.  Such detours are
unavoidable given facts about how evidence under-determines theories.

A formulation of a theory which includes mathematics may be simpler, in some ways, than a
formulation which does not.  But the latter formulation may be seen as simpler precisely because it does
not include references to abstract objects.  Appeals to simplicity and the other immanent virtues are not
categorical.  These theoretical properties have an aesthetic component which introduces a kind of
plasticity into QI1 and the indispensability argument, one which we will examine in more depth in
Chapter Four.

QI1 may best be seen as a working hypothesis in the spirit of Ockham’s razor.  We look to our
most reliable endeavor, natural science, to tell us what there is.  We bring to science a preference that it
account for our entrenched esteem for ordinary experience.  And we posit no more than is necessary for
our best scientific theory. 

The question of how we justify our beliefs about mathematical objects arose mainly because we
could not perceive them directly.  By rejecting the logical empiricist’s requirement for reductions of
scientific claims to sense data, Quine allows for beliefs in mathematical objects despite their abstractness
and inaccessibility.  Quine rules out independent justifications for formal sciences like mathematics
while allowing that mathematical knowledge can be justified as a part of our best theory.  We do not
need sensory experience of mathematical objects in order to justify our mathematical beliefs.  We merely
need to show that mathematical objects are indispensable to our best theory.
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§3: Believing Our Best Theory and the Double-Talk Argument
The second premise of Quine’s argument states that our belief in a theory extends to the objects

which that theory posits.  This second premise is important because it insists that we are required to be
univocal and sincere in asserting a theory and interpreting its assertions.  While there is some looseness
in our applications of the immanent virtues while constructing a theory, in determining on scientific
grounds the best systematization of our beliefs, once we have formulated our best theory, there is no
looseness in our beliefs about its posits.

Against QI.2, one might think that we could believe a theory while remaining agnostic or
instrumentalist about whether its objects exist.  Physics is full of fictional idealizations, like infinitely
long wires, centers of mass, and uniform distributions of charge.  Other sciences also posit objects that
we do not really think exist, like populations in Hardy-Weinberg equilibrium (biology), perfectly rational
consumers (economics), and average families (sociology).  Sometimes, scientists posit such objects,
knowing full well that they do not exist, in order to simplify inferences.  While no wire is infinitely long,
for certain calculations in electromagnetism such an assumption is useful, with no practical drawbacks. 
Talk of average family sizes or incomes is similar, facilitating communication with no worry of being
misleading.  Indeed, much of scientific reasoning is fo this sort, which Robert Batterman calls
asymptotic.

Given the utility and ubiquity of idealizations and asymptotic reasoning, we might think that we
can believe our best theories while recognizing that the objects to which it refers, strictly speaking, are
only ideal.  If we hold this instrumentalist attitude toward average families and infinitely long wires, we
might want to hold it toward circles, numbers and sets, too.

Against such instrumentalism, Quine argues that any discrepancy between our belief in a theory
and our beliefs in its objects is illegitimate double-talk.  One can not believe in only certain elements of a
theory which one accepts.  If we believe a theory which says that there are centers of mass, then we are
committed to those centers of mass.  If we believe a theory which says that there are electrons and quarks
and other particles too small to see, then we are committed to such particles.  If our best theory posits
mathematical objects, then we must believe that they exist.  We can not assert the existence of objects at
one moment and then take back those assertions at the next, on pain of inconsistency.

The double-talk criticism of instrumentalism appears throughout Quine’s work.  For example, his
response to Carnap’s internal/external distinction relies on it.  The claim that there is a prime number
between four and six seems to entail that a number exists.  Carnap proposed that we can accept that five
is prime, since that is an internal result within mathematics, without making the further step of accepting
that numbers exist, which is properly speaking an external question about whether to adopt number
language.  Quine responds that if we accept that five is prime, then we are committed to its existence.  If
we reject number language, we can no longer claim that five is prime, since there are no numbers to be
prime.  Once one has accepted mathematical objects as an internal matter, one can not merely dismiss
these commitments as the arbitrary, conventional adoption of mathematical language.  There is no
external perspective from which to stand and choose among languages or conceptual frameworks. 
“[N]atural science [is] an inquiry into reality, fallible and corrigible but not answerable to any supra-
scientific tribunal” (Quine 1981c: 72).

Quine’s response to the Meinongian Wyman in “On What There Is,” is also a double-talk
criticism.  Wyman presents two species of existence in order to avoid saying something about nothing,
for example that Pegasus is a horse.  Quine distinguishes between the meaningfulness of ‘Pegasus’ and
its reference in order to avoid admitting that Pegasus subsists while at the same time denying that
Pegasus exists.  Putnam, defending Quine’s indispensability argument, makes the double-talk criticism
explicitly.  “It is silly to agree that a reason for believing that p warrants accepting p in all scientific
circumstances, and then to add ‘but even so it is not good enough’” (Putnam 1971: 356).  

Worries about double-talk bother Quine’s critics as well as his supporters.  Field applies the
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double-talk criticism directly to worries about mathematics.  “If one just advocates fictionalism about a
portion of mathematics, without showing how that part of mathematics is dispensable in applications,
then one is engaging in intellectual doublethink...” (Field 1980: 2).

QI1 and QI2 together entail that we should believe in the objects that our currently best theory
says exist.  Any evidence applies to the whole theory and we can not pick and choose among the posits,
distinguishing ones we prefer from ones we disdain using some extra-scientific criteria.  Quine thus
makes no distinction between justifications of observable and unobservable objects, or between
mathematical and concrete objects.  All objects, trees and electrons and sets, are equally posits of our
best theory, to be taken equally seriously.  This univocality of ontological commitment is a manifestation
of Quine’s insistence that there is only a single way of knowing of anything.  We receive sensory
stimulus and construct a single theory to account for it.  What exists, all objects, are the posits of that
theory.  “To call a posit a posit is not to patronize it” (Quine 1960a: 22).

The univocality of ontological commitment underlying QI permits the argument’s proponents to
avoid some criticism.  It was one of Quine’s great achievements to notice that the access problem in the
philosophy of mathematics becomes obsolete once we recognize that ontological commitment is a matter
of constructing and formulating theories rather than grounding each individual claim in sense experience
or rational insight.  “In the case of abstract entities, certain protests against Platonism become irrelevant. 
There is no mysterious ‘realm’ of, say, sets in the sense that they need to have anything akin to location,
and our knowledge of them is not based on any mysterious kind of ‘seeing’ into such a realm.  This
‘demythologizing’ of the existence of abstract entities is one of Quine’s important contributions to
philosophy...” (Parsons 1983: 377-8).

The proponent of QI thus denies that the idealizations ubiquitous in science motivate or support
any kind of mathematical instrumentalism.  Even if scientists require fictionalizations like centers of
mass for their work, that work may be based on, or presupposing, a theory which makes no such claims. 
That latter, more parsimonious theory will be the proper place to look for existence claims since its role
is primarily to express the nature of things.  Theories with idealizations are more likely constructed to
facilitate inferences and communication.  The austere theory is the official version.  If there is no austere
version available, then it is too bad for the opponent of centers of mass; they turn out to be indispensable
posits and deserve no extra-scientific denigration.

The question, then, between the proponent of QI and the instrumentalist is whether an alternative
theory, one which eschews mathematical objects, can be formulated.  If so, then our everyday and
scientific uses of mathematics can be seen as merely instrumental.  If not, then commitment to their
existence seems unavoidable, on pain of double-talk.

In Chapter Four, I will return to the instrumentalist’s attempt to find a middle path, a defensible
position which accepts both that our best theories express commitments to mathematical objects and that
we should not be so committed.  For now, let’s, with Quine, reject such double talk.  

Even putting instrumentalism aside, we might have some reservations about the claims of our
best theories. There will be conflict between our currently best theory and ideal theories future science
will produce.  Future theories are, of course, not now available.  But what exists does not vary with our
best theory.  Thus, any current expression of our commitments is at best speculative.

We must have some skepticism toward our currently best theory, if only due to an inductive
awareness of the transience of such theories.  Applying this skepticism, one who denies Quine’s
indispensability argument might say that our best theory commits to mathematical objects, but we are not
really committed to our best theory.  Such skepticism, though, is also speculative, a casual observation
which is, strictly speaking, unavailable to the proponent of QI.  Insofar as one accepts double-talk, one
must reject QI.  The indispensabilist is adrift on Neurath’s boat, with no external, meta-scientific
perspective from which to judge our best theory, from which to hesitate in our affirmation of its
commitments.  We know, casually and meta-theoretically, that our current theory will be superceded, and
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that we will give up some of our current beliefs.  But, we do not know how our theory will be improved,
and we do not know which beliefs we will give up.  The best we can do is believe the best theory we
have, and believe in its posits, and have a bit of humility about these beliefs. 

QI1 and QI2 say that we should believe that the posits of our best theory exist.  They do not tell
us how to determine what those posits are, which is the job of the next premise.

§4: Quine’s Procedure for Determining the Commitments of a Theory
The third step of Quine’s argument is an appeal to his general procedure for determining the

posits, the ontological commitments, of any theory.  Any one who wishes to know what to believe exists,
and in particular whether to believe that mathematical objects exist, needs a method.  There are many
possible criteria.  Most casually, we might rely on our brute observations.  But our senses are limited, and
the content of experience is ambiguous.  Another method would involve looking at our ordinary
language.  Perhaps the referents of our common singular terms are what exist.  But ordinary language is
misleading and incomplete.

Quine provides a simple and broadly applicable procedure for determining the ontological
commitments of any theory.

QP QP1 Choose a theory.
QP2 Regiment that theory in first-order logic with identity.
QP3 Examine the domain of quantification of the theory to see what objects the

theory requires to come out as true.

The previous two sections discuss the application of QP1 to the indispensability argument.  But,
Quine’s method for determining our commitments applies to any theory.  Theories which refer to trees,
electrons, and numbers, and theories which refer to ghosts, caloric, and God, are equally amenable of
Quine’s general procedure.

The second step of Quine’s procedure invokes first-order logic as a canonical language.  First-
order logic (with identity) is a formal language of predicates and variables, logical connectives, some
optional punctuation, quantifiers, and an identity predicate.  In arguing that we can use this language as
canonical since we can use it to express anything we need to say, Quine credits first-order logic with
unifying the referential apparatus of ordinary and scientific language.  He emphasizes its extensionality,
efficiency, and elegance, convenience, simplicity, and beauty.25

Quine’s enthusiasm for first-order logic largely derives from some attractive technical virtues.  A
variety of definitions of logical truth concur: in terms of logical structure, substitution of sentences or of
terms, satisfaction by models, and proof.  First-order logic is complete, in the sense that any valid
formula is provable.  Every consistent first-order theory has a model.  First-order logic is compact, which
means that any set of first-order axioms will be consistent if every finite subset of that set is consistent. 
It admits of both upward and downward Löwenheim-Skolem theorems, which mean that every theory
which has an infinite model will have a model of every infinite cardinality (upward) and that every
theory which has an infinite model of any cardinality will have a denumerable model (downward).26

Less technically, the existential quantifier in first-order logic is a natural cognate of the English
term ‘there is’, and Quine proposes that all existence claims can and should be made by existential
sentences of first-order logic.  “The doctrine is that all traits of reality worthy of the name can be set

25 See Quine 1986: 79 and 87.

26 See Mendelson 1997: 377.
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down in an idiom of this austere form if in any idiom” (Quine 1960: 228).  Moreover, “The reason for
taking the regimented notation as touchstone is that it is explicit referentially, whereas other notations,
having other aims, may be vague on the point” (Quine 1986c: 534).

We should take first-order logic as our canonical language only if: 

FOL1  We need a single canonical language; 
FOL2 First-order logic is adequate to express our ontological commitments; and 
FOL3 No language other than first-order logic is adequate.

In Chapter Three, I will deny each of the clauses FOL1-FOL3.  Here, I present Quine’s reasons
for holding them.

FOL1 arises, for Quine, almost without argument from QI1 and QI2, from his holism and his
double-talk argument.  One of Quine’s most striking and important innovations was his linking of our
concerns when constructing formal theory with general existence questions.  When we regiment our
correct scientific theory correctly, we will know what exists.  “The quest of a simplest, clearest overall
pattern of canonical notation is not to be distinguished from a quest of ultimate categories, a limning of
the most general traits of reality” (Quine 1960a: 161).

Whether FOL2 holds depends on how we use our canonical language.  First-order logic is
uncontroversially useful for what Quine calls semantic ascent.  When we ascend, we talk about words
without presuming that they refer to anything; we can deny the existence of objects without seeming to
commit to them.  For example, on some theories of language, sentences which contain terms that do not
refer to real things are puzzling.  Consider:

CP The current president of the United States does not have three children.
TF The tooth fairy does not exist.

If CP is to be analyzed as saying that there is a current president who lacks the property of having
three children, then by parity of reasoning TF seems to say that there is a tooth fairy that lacks the
attribute of existence.  This analysis comes close to interpreting the reasonable sentence TF as a
contradiction saying that there is something that is not.

In contrast, we can semantically ascend, claiming that the term ‘the tooth fairy’ does not refer. 
To that end, TF may be conveniently regimented in first-order logic, using ‘T’ to stand for the property of
being the tooth fairy.  ‘-(�x)Tx’ carries no implication that the tooth fairy exists.  Similar methods can
be applied to more serious existence questions, like whether there is dark energy or an even number
greater than two which is not the sum of two primes.  Thus, first-order logic provides a framework for
settling disagreements over existence claims.

For FOL3, Quine argues that no other language is adequate for canonical purposes.  Ordinary
language is too sloppy, in large part due to its use of names to refer to objects.  We use names to refer to
some things which exist: ‘Muhammad Ali’, ‘Jackie Chan’, ‘The Eiffel Tower’.  But some names, like
‘Spiderman’, do not refer to anything real.  Some things, like most insects and pebbles, lack names. 
Some things, like most people, have multiple names.

We could clean up our language, constructing an artificial version in which everything has
exactly one name.  Still, in principle, there will not be enough names for all objects.  As Cantor’s
diagonal argument shows, there are more real numbers than there are available names for those numbers. 
If we want a language in which to express all and only our commitments, we have to look beyond
languages, like ordinary natural language, which rely on names.

Moreover, in natural languages, reference may also be found in pronouns, which diffuses the
matter.  Unifying reference in the first-order quantifiers, rather than using names, simplifies the task. 
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Instead of looking for real names among the various general and singular terms, pronouns, and proper
nouns, we can look exclusively at the quantifiers of the theory.

We are forced to choose between languages with names and languages with quantifiers because
we can not include names in a language with quantifiers.  Consider the derivation AE, valid in standard
languages which include both names and first-order quantifiers, which entails that anything named exists:

AE *1. -(�x)x=a Assumption, for indirect proof
*2. (�x)x=x Principle of identity
*3. (�x)-x=a 1, Change of quantifier rule
*4. a=a 2, Universal instantiation
*5. -a=a 3, Universal instantiation

6. (�x) x=a 1-5, Indirect proof 27

AE shows that any language which includes both names and quantifiers is trouble.  If we accept
Quine’s reasons for preferring a canonical language which includes quantifiers, then we are left to choose
among first-order and higher-order logics.

Higher-order logics have all of the expressive powers of first-order logic and more.  Most
distinctly, where first-order logic allows variables only in the object position (i.e. following a predicate),
second-order logic allows variables in predicate positions, as well, and introduces quantifiers to bind
those predicates.  Logics of third and higher order allow further predication and quantification.  As they
raise no significant philosophical worries beyond those concerning second-order logic, I will focus solely
on second-order logic. 

To see how second-order logic works, consider the inference R.

R R1. There is a red shirt.
R2. There is a red hat.
RC. So, there is something (redness) that some shirt and some hat share.

RC does not follow from R1 and R2 in first-order logic, but it does follow in second-order logic.

RS: R1S. (�x)(Sx C Rx)
R2S. (�x)(Hx C Rx)
RCS. (�P)(�x)(�y)(Sx C Hy C Px C Py)

Accommodating inferences such as R by extending one’s logic might seem useful.  But higher-
order logics allow us to infer, as a matter of logic, that there is some thing, presumably the property of
redness, that the shirt and the hat share.  It is simple common sense that shirts and hats exist.  It is a
matter of significant philosophical controversy whether properties like redness exist.  Thus, a logic which
permits an inference like RS is controversial.  

Quine’s objection to higher-order logics, and thus a central part of his defense of using first-order
logic as canonical, is that we are forced to admit controversial elements as interpretations of predicate
variables.  Even if we interpret predicate variables in the least controversial way, as sets of objects that
have those properties, higher-order logics demand sets.  Thus, Quine calls second-order logic, “Set theory
in sheep’s clothing” (Quine 1986a: 66).  Additionally, higher-order logics lack many of the technical

27 I owe the derivation to David Rosenthal.
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virtues, like completeness and compactness, of first-order logic.28

Second-order logic and logics of higher orders have a variety of appealing and intuitive uses,
especially in mathematics and logic.  For the purposes of QI, though, they are contentious since their
adoption would seem to beg the question of the existence of mathematical objects.  Quine’s preference
for first-order logic, given its neutrality on that question, seems prudently conservative.

Once we settle on first-order logic as a canonical language, we must specify a method for
determining the commitments of a theory in that language.  Reading existential claims seems
straightforward.  For example, R2, read naturally, says that there is a thing which is a hat and which is
red.  But theories do not determine their own interpretations.  Quine relies on standard Tarskian
model-theoretic methods to interpret first-order theories.  On a Tarskian semantics, we ascend to a
metalanguage to construct a domain of quantification for a given theory.  We consider whether sequences
of objects in the domain, taken as values of the variables bound by the quantifiers, satisfy the theory’s
statements, or theorems.  The objects in the domain that make the theory come out true are the
commitments of the theory.  “To be is to be a value of a variable”  (Quine 1939: 50, and elsewhere).

The move to a metalanguage means that we do not directly interpret first-order theories to find
their ontological commitments.  We look to their models.  Quine’s reasons for examining models, rather
than the theorems directly, is simply formal.  We find our commitments in examining existential
quantifications, but quantifications bind variables which are not themselves the things we think exist. 
Nor are their substituends what exist; these may be taken as names of the things that exist.  Variables
take as values the things that exist, and these values are collected in the domain of the theory.

One reason to favor Quine’s procedure is because it can prevent prejudging what exists.  Call this
the neutrality of Quine’s method.  On his view, we construct scientific theory without prior determination
of what exists.  Scientists take the evidence and the theory wherever it leads them.  They balance formal
considerations, like the elegance of the mathematics involved, with an attempt to account for the broadest
empirical evidence.  The more comprehensive and elegant the theory, the more we are compelled to
believe it, even if it tells us that the world is not the way we thought it is.  If the theory yields a
heliocentric model of the solar system, or the bending of rays of light, then we are committed to
heliocentrism or bent light rays.  Our commitments are the byproducts of this neutral process.

§5: Mathematization
The final step of QI involves simply looking at the domain of the theory we have constructed. 

When we write our best theory in our first-order language, we discover that the theory includes physical
laws which refer to functions, sets, and numbers.  Consider again Coulomb’s Law: F = k *q1q2*/ r

2. 
Regimenting Coulomb’s Law, or any sentence of physics, all the way down into first-order logic would
make it quite complicated, but a partial first-order regimentation suffices to demonstrate the
commitments of the law, using ‘Px’ for ‘x is a charged particle’.

CLR �x�y{(Px & Py) 6 �f [f(q(x), q(y), d(x,y), k) =  F]}
where F = k *q(x) q(y)*/ d(x,y)2

In addition to the charged particles over which the universal quantifiers range, there is existential
quantification over a function, f.  This function maps numbers (the Coulomb’s Law constant, and
measurements of charge and distance) to other numbers (measurements of force between the particles).

In order to ensure that there are enough sets to construct these numbers and functions, our ideal
theory must include set-theoretic axioms, perhaps those of Zermelo-Fraenkel set theory with choice,

28 For a defense of second-order logic, see Shapiro 1991.
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ZFC.  The full theory ZFC is unnecessary for scientific purposes; there will be some sets which are never
needed, some numbers which fail to measure any real quantity.  But we adopt a full set theory in order to
make our larger theory as elegant as possible.  ZFC is tidily axiomatized where a theory which only
provided the sets one actually uses in science would be a gerrymandered mess.  We can derive from the
axioms of any adequate set theory a vast universe of sets.  So, CL contains or entails several existential
mathematical claims. 

CL, with its mathematical commitments, is representative of the kind of physical law that
motivates Quine’s indispensability argument.  Such examples abound.  Real numbers are used for
measurement throughout physics, and other sciences.  Quantum mechanics makes essential use of Hilbert
spaces and probability functions.  The theory of relativity invokes the hyperbolic space of Lobachevskian
geometry.  Economics is full of analytic functions.  Psychology uses a wide range of statistics. 
According to QI, then, we should believe that these mathematical objects exist.

Opponents of QI4 have developed strategies for re-interpreting apparently ineliminable uses of
mathematics, especially in physics.  Some reinterpretations use alethic modalities (necessity and
possibility) to replace mathematical objects.  Others invoke space-time points or regions.  Some of these
projects are motivated by fictionalism, in order to show why quantification of mathematical objects is
unnecessary and that we should thus take existential sentences which quantify over mathematical objects
to be false.  Other projects are reinterpretative, with the goal of arguing that our first-order
quantifications over mathematical objects should be taken as true, when properly interpreted.  It is quite
easy, if technical, to rewrite first-order theories in order to avoid quantifying over mathematical objects. 
It is less easy to do so while maintaining Quine’s canonical language of first-order logic.  

For example, Hartry Field’s reformulation of Newtonian gravitational theory (Field 1980)
replaces the real numbers which are ordinarily used to measure fundamental properties like mass and
momentum with relations among regions of space-time.  Field replaces the ‘2' in claims like, “The
beryllium sphere has a mass of 2 kg” with a ratio of space-time regions, one twice as long as the other.  In
order to construct the proper ratios of space-time regions, and having no mathematical axioms at his
disposal, Field’s project requires either second-order logic or axioms of mereology, both of which are
controversial extensions of first-order logic.  

Work on QI4 is legion and I will not add to it here.  As I mentioned in the first chapter, this book
concerns the relationship between the two different kinds of platonism: autonomy and indispensability
platonism.  Whether QI4 is true or false, and on what interpretation, is mainly irrelevant to my goals,
though if it were decidedly false, the platonist would lose the option of relying on QI and would be
forced either to adopt autonomy platonism or to abandon platonism.  For the purposes of argument, to
make my defense of autonomy platonism stronger, I grant the indispensabilist QI4.29

29 For an excellent survey of dispensabilist strategies, and further references, see Burgess and
Rosen 1997; for more recent work, see Melia 1998, MacBride 1999, and Melia 2000.



Chapter Three: Problems for QI

In the 1980s and 1990s, most attention to the indispensability argument was paid to the premise
QI4, the question of whether mathematical or scientific theories could be rewritten as attractive theories
without quantifying over mathematical objects.  I believe that the problems with QI arise earlier in the
argument.  Recently, some voices have emerged which also challenge other premises.  Philosophers
including Azzouni, Melia, and Leng have questioned the claim that quantification over mathematical
objects, even in good or best theories, should entail or justify belief in mathematical objects.

In this chapter, I discuss three distinct problems with Quine’s indispensability argument.   The
criticisms of this chapter do not presume autonomy platonism or indeed any alternative to QI.  Some of
the criticisms I discuss originate in the works of people who deny platonism but most of those criticisms
are also consistent with at least some forms of platonism.  

I focus on three kinds of criticisms.  First, following work of Penelope Maddy, I argue that
Quine’s naturalism has a natural internal tension and at least some understandings of his naturalism
should not lead to the indispensability argument.  On one interpretation, Quine’s abandonment of first
philosophy should leave mathematical justifications alone rather than deferring the question of whether
we should believe that mathematical objects exist to the question of how and when they are invoked in
scientific theories.

Second, following work of Elliott Sober, I argue that the holism underlying the indispensability
argument does not extend to mathematics.  The ways in which we isolate mathematical theories from
empirical refutation show that evidence for scientific theories does not transfer to mathematics as the
indispensabilist claims.  Unlike Sober, though, I do not extend my criticisms of holism to its application
within empirical science.

Last, I raise some worries for Quine’s method for determining ontological commitments of
theories.  Quine’s method purportedly allows us to reveal our commitments without prejudice: we
regiment our best theory using scientific principles of theory construction and the commitments fall out
of it, naturally, univocally, and unequivocally.  As some recent critics argue, Quine’s method
misrepresents the way in which we determine our commitments.  Instead, we regiment our pre-
considered judgments about what exists.  If, like Quine, we are predisposed to nominalism, QI, with its
reliance on Quine’s method for determining the ontological commitments of a theory, should not commit
us to beliefs in mathematical objects.  If we want to justify our mathematical beliefs, we must look
elsewhere.

§1: Two Interpretations of ‘Naturalism’
The indispensability argument depends, especially in its first premise, on Quine’s claim that all

evidence is sense evidence.30  While Quine, in places, calls himself an empiricist, and the indispensability
argument is clearly an empiricist’s argument, Quine prefers to call his views ‘naturalist’.  As with any
distillation of a variety of complex views to a simple term, there are different interpretations of
‘naturalism’.  Quine characterizes naturalism as the rejection of the view that philosophy is independent
of science or is a way of evaluating science.

One important aspect of Quine’s naturalism, central to his use of the term, is the assimilation of
epistemology to empirical psychology.  If philosophy can provide no extra-scientific criteria with which
to evaluate science, then there is no first philosophy (no metaphysics) and no epistemology independent

30 It is for this reason that Putnam calls Quine, “The Greatest Logical Positivist.”  Isaacson notes
that Quine’s views about evidence really are verificationist, if not reductionist: “Of course, not in the
form rejected by him in ‘Two Dogmas’...  What was wrong with the Vienna Circle’s verificationism was
not the role it assigned to verification but the unit of language to which verification was taken to apply”
(Isaacson 2006: 215).
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of our best scientific theories.  Quine’s holism ensures that claims in philosophy, physics, biology,
economics, and mathematics, are all inter-related.  No claim is prior to, or independent of, any other. 
Epistemology, our theory of knowledge, is continuous with neuroscience, our theories of the brain, and
cognitive psychology, our theories of our thought, and biology, our theories of sensation, and information
processing.

Naturalism does not repudiate epistemology, but assimilates it to empirical psychology.  Science
itself tells us that our information about the world is limited to irritations of our surfaces, and
then the epistemological question is in turn a question within science: the question how we
human animals can have managed to arrive at science from such limited information (Quine
1981c: 72).

Concomitantly, Quine views philosophy as continuous with the sciences.  Philosophers can make
progress in mathematics, say, as Quine did in set theory, or in empirical science, by contributing to the
understanding of empirical research.  Or they can work in areas traditionally studied by philosophers. 
But there is no special, independent discipline of philosophy.  If we want to do metaphysics, we just
construct the best scientific theories, and interpret them.  We look to scientists for their work.

This rough sketch of Quine’s naturalism, so central to the indispensability argument, is not
uncontroversial.  In particular, it is not clear how strictly we are to take Quine’s claims about
epistemology being just empirical psychology.  Psychology is generally a descriptive discipline,
exploring brain functions, thoughts, and personality.  Epistemology is a normative pursuit, distinguishing
better and worse accounts of belief formation and justification.  Indeed, the conclusion of QI is explicitly
normative: we should believe that mathematical objects exist.  It is difficult to see how such a normative
claim could follow from an empirical field like psychology.

Most relevantly here, Maddy argues that two interpretations of Quine’s naturalism are in tension
with one another, especially around the question of the status of our mathematical beliefs.  On one
interpretation, Quine privileges empirical science, understood holistically, as the locus of all our
ontological commitments; mathematicians must defer to scientists on ontological questions.  If
mathematics is required for science, then our mathematical beliefs are justified.  But insofar as portions
of mathematics remain unapplied, the relevant beliefs remain unjustified.

On the other interpretation, since Quine defers all questions of what exists to the scientists and
scientists isolate mathematics from the rest of their theories, the applications of mathematics seem to be
irrelevant to the justification of mathematical beliefs.  Scientists do not act as if all the objects over
which they quantify have the same status.  They make distinctions between the real elements of their
theories and the instrumental elements.  In particular, they seem to rely on something closer to an eleatic
principle when evaluating the commitments of their theories.  

The central idea behind the eleatic principle is that only those things which are causally active
are real.  The principle, which has its roots in Plato’s Sophist, is notoriously difficult to articulate
precisely.  This difficulty arises in part because necessary and sufficient conditions are always hard to
formulate and in part because the principle relies on a concept, causation, which is itself notoriously
unclear.  Eleatics may emphasizes either causal activity or spatio-temporal location.  If we truly defer our
questions about what exists to science, as Quine urges, then on the second interpretation of naturalism,
we are moved to reject Quine’s view that scientific evidence transfers to mathematical claims.  In
practice, scientists reject Quine’s holism, at least insofar as they do not reject as unfounded mathematical
results which turn out to be unapplied.  The naturalist seems to have to decide between accepting Quine’s
holism or rejecting it in favor of the instrumentalism that scientists actually use.

Such instrumentalism about mathematical objects employs double-talk about ontological
commitment which is strictly forbidden by Quine and others who defend QI.  According Maddy, the
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Quinean response to instrumentalism unjustifiably privileges philosophy over scientific practice.  The
holistic response elevates philosophical reflection over scientific practice, and thus conflicts with a
proper understanding of naturalism.  A consistent naturalism, Maddy argues, would not reject
instrumentalism if that view is a part of scientific practice; and instrumentalism is an accepted principle
of scientific practice.

Maddy thus concludes that the indispensability argument fails because the ontological
commitments of a theory are not to be found exclusively in the quantifications of the theory.  Instead,
naturalism entails that epistemology is to be assimilated to empirical psychology, and that metaphysics is
to be assimilated to empirical science.  The ontological commitments of a theory should be discovered by
looking at the actual practice of scientists.

The arguments for naturalism in philosophy can thus lean in two different directions.  Some
philosophers believe that naturalism supports a denial of platonism.  After all, mathematical objects are
not natural objects; being abstract, they are outside the natural world.  Mary Leng, for example, defends
fictionalism as a result of privileging the naturalism which respects the practice of scientists over
Quinean holism and the double-talk argument. 

But naturalism can work in the other direction as well.  As Maddy writes, if we take the work of
mathematicians seriously and defer ontological claims to the science of mathematics, naturalism seems to
support platonism.  For mathematicians and scientists quantify over mathematical objects all the time.  If
there really is no higher tribunal than science itself, the anti-platonist has no position from which to deny
such existential quantifications.

Moreover, the naturalism which defers questions about ontology to practicing scientists does not
entail that ontological questions must be answered by empirical scientists.  If we defer such questions to
the mathematical scientists constructing mathematical theories, without detouring through empirical
science, Quine’s naturalism can, ironically but not implausibly, support autonomy platonism.  I return to
this view, my own, in the last chapter of the book.

§2: Confirmation Holism and Disciplinary Boundaries
The interpretation of Quine’s naturalism which I hold, the one which supports autonomy

platonism, is contentious and I do not wish my argument against QI to rely on it.  There are more
important flaws in the argument as well as problems with the conclusion which I discuss in Chapter Five. 
One more-serious worry about QI concerns its holism.

Quine argues for the holism which underlies QI1, his allegation that our beliefs face the tribunal
of experience only when taken together, from a quick, uncontroversial logical point.  Any sentence can
be held without contradiction and come what may as long as consequent adjustments are made to
background theories.  Within empirical science, this holism is not unreasonable.  But Quine’s holism
ignores the important differences between posits of mathematical objects and posits of empirical objects. 
In practice and in principle, we shield mathematics from empirical refutation, even if the logical point
holds.

Holism is suspect precisely when it comes to mathematics.  Empirical evidence never leads us to
give up our mathematical beliefs.  In contrast, we have given up beliefs in all sorts of other theoretical
posits.  Moreover, it is easy to imagine evidence that would force us to give up our current beliefs in non-
mathematical theoretical posits, in objects which are neither causally nor constitutionally related to
sensible objects.  There seems to be a serious, principled, methodological difference between
mathematical and empirical posits.

Quine argues that the commonsense distinction between mathematics and empirical science is
illusory.  All objects are posits, including ordinary ones.  “Physical objects, small and large, are not the
only posits.  Forces are another example; and indeed we are told nowadays that the boundary between
energy and matter is obsolete.  Moreover, the abstract entities which are the substance of mathematics -
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ultimately classes and classes of classes and so on up - are another posit in the same spirit” (Quine 1951:
45).

In lieu of the commonsense distinction, Quine presents a continuum of commitments from our
most firm and central to our most tenuous and peripheral: the web of belief.  As we are unlikely to give
up our beliefs in ordinary objects, we are unlikely to cede our mathematical beliefs.  But any posit may
be questioned.  Starting our reasoning about the world with our beliefs about ordinary objects, as Quine
rightly does, is no guarantee of ending with them.  If on a scientific basis, say, Berkeleyan idealism
turned out to be a better theory than physicalism, if it were more useful and simpler, say, then we should
in fact abandon beliefs in physical objects.  We can cede any belief, including our basic mathematical
ones.

In contrast to Quine’s view, since no empirical, scientific reasons sway us to abandon our
mathematical beliefs, then we have the basis for a distinction which undermines his holism.  We act as if
the traditional conception of mathematics is true.  On the traditional conception, mathematical claims are
necessarily true and mathematical objects, the subjects of those claims, thus exist in all possible worlds. 
No empirical evidence transfers to our mathematical beliefs, either for the existence of mathematical
objects or against it.

Appeals to necessity and possible worlds are notoriously tendentious.  But the concept of
necessity is essentially the one which underlies even some austere work, in particular Field’s claim of
conservativeness for mathematics.  In defending fictionalism, Field argues in detail that good
mathematical theories are conservative over our best physical theories: The addition of mathematics to a
theory with no mathematical axioms should license no additional nominalistically-acceptable 
conclusions.  If a mathematical theory is conservative over a nominalist physical theory, then we can use
the mathematics to facilitate derivations in the physical theory with assurance that we will not derive any
unacceptable empirical consequences.  Mathematical theories are supposed to be compatible with any
empirical theory.

By itself, an appeal to our evident respect for the traditional conception of mathematics is
insufficient to establish its truth.  It ignores the strength of Quine’s position.  Quine accounts for the
immunity of mathematics by referring to the centrality of beliefs we never cede.  Like logical principles,
mathematical beliefs are interconnected with our other beliefs in such an integral way that abandoning
them would always force impractical redistributions of truth values among the remaining components. 
As a practical matter, we never give them up, even though we could, in principle.  The appearance of
necessity remains a decision, because we can always choose to give up something other than the
mathematical elements of our theory.  “If asked why he spares mathematics [in revising his theory in the
face of recalcitrant experience] the scientist will perhaps say that its laws are necessarily true; but I think
we have here an explanation, rather, of mathematical necessity itself.  It resides in our unstated policy of
shielding mathematics by exercising our freedom to reject other beliefs instead” (Quine 1992: 15).

Sober calls holism into question with an explanation of why we never cede mathematical beliefs
on the basis of empirical experiment.  We subject mathematical claims to different kinds of tests.  We do
not, in practice or in principle, hold them open to refutation on the basis of empirical evidence.

Sober calls the problems which confront science discrimination problems.  We evaluate a
scientific hypothesis against other hypotheses.  But we are able to do this only when other hypotheses are
available.  Sober calls this description of scientific methodology contrastive empiricism.  Experiments
solve discrimination problems among competing hypotheses by providing evidence in favor of one or
another.  For example, Sober considers these three competing hypotheses:

Y1 Space-time is curved.
Y2 Space-time is flat.
Y3 Space time is not curved, although all evidence will make it appear that it is.
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Empirical evidence will discriminate between Y1 and Y2, but no evidence will discriminate
between Y1 and Y3.  Similarly, no discrimination problem can help us to confirm the truth of
mathematical statements, or the existence of mathematical objects.  “If the mathematical statements M
are part of every competing hypothesis, then, no matter which hypothesis comes out best in the light of
the observations, M will be part of that best hypothesis.  M is not tested by this exercise, but is simply a
background assumption common to the hypotheses under test” (Sober 1993: 45).31

Sober thus shows that Quine’s allegation that it is always in principle possible to cede any beliefs
in light of recalcitrant experience, is in fact contradicted by the ways we test our hypotheses.  Our tests
ensure that mathematical beliefs are never called into question.  Sober provides examples of everyday
failures of additivity: two gallons of salt and two gallons of water do not yield four gallons of salt water;
two foxes and two chickens yield only two fat foxes and a pile of feathers.  If Quine’s holism were right,
there should in principle be an option of giving up our mathematical beliefs in such cases.  If all
examples where we would cede mathematical beliefs are unavoidably abstruse and implausible, Quine’s
doctrine appears suspect. 

In later work, Sober calls Quine’s holism bizarre for its consequence that evidence for an
empirical theory is supposed to extend to all background beliefs, not just those in mathematics.

If I believe relativity theory, and this theory is confirmed by some observation that I make, then
everything I believe is also confirmed.  To say otherwise is to say that the observation impinges
only on part of what I believe; my total system of beliefs then would not have confronted the
tribunal of experience as a corporate body (Sober 2005: 266).

Quine notes that his holism is not a practical matter.  Regarding “Two Dogmas of Empiricism,”
he writes, “All we really need in the way of holism... is to appreciate that empirical content is shared by
the statements of science in clusters and cannot for the most part be sorted out among them.  Practically
the relevant cluster is indeed never the whole of science; there is a grading off...” (Quine 1980a: viii). 
While Quine refers to the stronger semantic holism, his point is that there is a factual element in the
content of any sentence, and thus an ineliminable component open to confirmation or refutation in every
sentence, including those of mathematics.  Quine is ceding that these elements may be undetectably
subtle.  For cases of empirical confirmation of empirical beliefs, Quine’s response is perhaps defensible. 
But for the case at hand, whether mathematical beliefs are called into question or confirmed by empirical
evidence, Sober’s contention that mathematics is immune to disconfirmation is more plausible.

Sober’s argument against holism relies on differences in testing, differences which one might
esteem merely practical and thus no evidence against holism.  Resnik argues that such differences in
practice do not refute holism.  “Sober is right that in practice we rarely, if ever, put mathematical laws to
the sorts of specific tests that we apply to some scientific hypotheses.  But this does not imply that purely
logical considerations show that mathematics is immune to such testing” (Resnik 1997: 124).

Sober need not establish a difference between mathematical and empirical posits on a logical
basis in order to establish the distinction.  Quine’s naturalism is a commitment to the methods of science. 
Scientific methodology holds mathematical principles immune from revision.

Moreover, Sober can accept Quine’s assertion that confirmation holism holds as a logical matter
without ceding the claim that empirical evidence may undermine our mathematical beliefs.  Quine’s
claim only holds on the presumption that our beliefs in mathematics are based exclusively on their
applicability in science.  If we have other reasons to believe mathematical claims, ones, for example,

31 Putnam similarly suggests that we can distinguish mathematics from science by the fact that
scientific theories have viable competitors and mathematical theories do not.  See Putnam 1967b: 50.
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based on our estimation of mathematical methods, then Quine’s logical point that we can excise
mathematical objects from our theories is moot.

Azzouni also recognizes a difference in kinds of posits despite accepting Quine’s point about the
logic of confirmation.  “[D]espite the fact that every posit is treated in the same way, logically speaking,
by quantifiers in a theory, nevertheless, mathematical posits get into scientific theories the wrong way”
(Azzouni 1997a: 481).  Again, if our mathematical beliefs are justified in ways independent of their
applications in science, they are not subject to abandonment for empirical reasons.

If Sober’s criticism of holism is correct, as I believe it is, then at least some elements of our best
theory are separate and isolatable from others, depending on how and why we adopt them.  Resnik
challenges Sober to provide non-arbitrary lines between logic, science, and mathematics, admitting that
holism would be refuted if one could establish, “[A]n epistemically principled division between the
empirical and formal sciences.  But I do not see much hope of success here” (Resnik 1997: 135).

Resnik’s hopelessness is no evidence for the impossibility of the task.  One way to distinguish
among logic, mathematics, and science is by the ontology they require.  Physical science likely entails no
more than denumerably infinitely many objects, perhaps fewer.  Mathematics demands more.  Also, the
types of geometric space with which mathematicians are concerned exceed even the most tutored
intuitions and the most arcane physical theory.  And it is easy to determine which objects are purely
mathematical.  They are the ones to which purely mathematical theories (e.g. ZFC set theory or the
Dedekind-Peano postulates) refer.

Some philosophers like Resnik see a blurred line between mathematical objects and other posits
of scientific theory.  Certainly some posits are oddly unfamiliar and inaccessible to our senses: space-
time points, quarks, the equator.  Such objects seem intractable, like mathematical objects.  Some
philosophers even claim that objects can be complex, consisting of both concrete and mathematical
components.32  But these kinds of puzzles in no way detract from our ability to identify purely
mathematical objects.  

There are two independent points here.  The first is that we can make a principled distinction
between mathematical objects and empirical objects and thus between mathematics and empirical
science.  The second point is Azzouni’s claim that mathematical objects get into our empirical theories in
a different way than empirical objects do.  There is a difference between positing an element into an
already-existing framework, as we do with electrons, and positing an entire abstract realm.  Consider how
mathematical objects get added to a theory on the holist’s picture.  We do not take them as explananda,
as we do with our experiences of trees.  We do not set out to describe the behavior of mathematical
systems.  We construct a theory without reference to mathematical objects until we find that our theory
requires them for the account of other phenomena.  Then, we add mathematical axioms only as far as the
theory requires them for its formulation.

The case is different with empirical posits.  When we introduce electrons, say, we include a story
about the physical relation between the electrons and the bodies which actually concern us.  Trees are
made of subatomic particles; they are not made of sets.  When we adopt mathematical entities, there is no
effect which they are postulated to cause.  We never construct experiments to observe them, or seek
sense experiences of them, as we do an electron trail in a cloud chamber.  We are just forced to quantify
over mathematical objects by the desire for greater facility in manipulating descriptions of physical
situations.

 Parsons raises another objection to Quine’s assimilation of theoretical posits and
indispensability claims.  High-level theoretical posits tend to be made tentatively.  Propositions involving
such posits are speculative and hotly debated, in contrast to the obviousness of mathematics.  In

32 See Katz 1998: Chapter 5.
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mathematics, we have, “The existence of very general principles that are universally regarded as obvious,
where on [a Quinean] empiricist view one would expect them to be bold hypotheses, about which a
prudent scientist would maintain reserve, keeping in mind that experience might not bear them out...”
(Parsons 1980: 152).

Quine insists that all philosophical questions are to be answered using scientific methods.  To
hold that scientists must test mathematical statements as they test empirical ones is to favor a
methodology based not on scientific principles but on prior philosophical prejudice.  Mathematical
theories are, as a matter of practical fact, tested differently from empirical ones.  Of course,
mathematicians have their own methods which might be called scientific, in a broad sense.  But
mathematical methods require proof rather than inductive support and conclusions do not depend on
experimentation except in a loose and metaphorical sense.

The criticisms of holism in this section have a limited scope.  I am merely interested in
establishing that holism does not extend to mathematics even if it accurately describes the relations
among empirical claims within scientific theories.  Sober believes that his methodological objections
extend to the ways in which the holist depicts confirmation within science.33  I need not take such a
contentious position.  For my purposes, Quine’s confirmation holism may hold within empirical science. 
Justification may well be spread throughout empirical theory.  The web of belief, restricted to our
empirical beliefs, may remain a useful metaphor.

Similar observations hold, perhaps even more saliently, within mathematics.  The holism with
mathematics is clear.  Equivalent mathematical theories admit of varying alternative axiomatizations:
compare Hilbert’s modern axiomatization of Euclidean geometry to those of Birkhoff, Tarski, and
Friedman.34  Projects of reverse mathematics, seeking minimal axiomatizations, are newly vibrant areas
of mathematical research precisely because there are so many different formulations of mathematical
theories.  Such projects proceed holistically within the discipline.

The extension of the holistic picture to wed mathematics and empirical science, though, is
unjustified.  Mathematical and empirical theories are independent.  Their construction may proceed
holistically within each theory without crossing disciplinary boundaries.  QI1 tells us that we should
believe our best scientific theory.  It does not say that we shouldn’t believe our best mathematical theory
independently!35

§3: Problems for the Quinean Method for Determining Ontological Commitment
The first two steps of QI involve settling on a single empirical-scientific theory in which to

express our commitments.  I have argued that our commitments are not all made in the same way by the
same theory.  Still, even if we grant QI1 and QI2, QI depends on Quine’s general procedure for
determining ontological commitments.  Against Quine’s method, I argue that we should not look to
first-order versions of scientific theories for our commitments.  There are many useful logics, some of
higher order, some which include names.  None of them are the unique language for expressing our
commitments.  My criticisms apply to the use of first-order logic as canonical language, to the way in
which Quine reads the commitments from a regimented theory, and to the invocation of formal languages
as a tool for determining our commitments.

33 See Sober 1999 and Sober 2005.

34 Harvey Friedman presents an alternative axiomatization based on equidistance on FOM.  

35 Some versions of Quine’s indispensability argument invoke his naturalism to debar such
beliefs.  For example, see the ‘only’ clause in Colyvan’s version at Colyvan 2001: 11.

http://www.cs.nyu.edu/pipermail/fom/1999-January/002554.html
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Quine’s argument that we should find the ontological commitments of theories in their existential
quantifications has two distinct parts: an argument against the unclarity of natural language, especially
the uses of names, and an argument against using higher-order languages as canonical.

§3.1: Names and Quantifiers
First, we should note that Quine’s argument that the first-order existential quantifier is the best

tool for indicating existence (since it is a cognate of the natural-language ‘there is’) is undermined by his
rejection of names, which have common and useful roles in natural language.  Against looking to names
to find the commitments of a theory, Quine points to four problems.

PN1 Some names do not refer.
PN2 We often find reference in terms which do not look like names on the surface, in

pronouns for example.  
PN3 There are not enough names.  
PN4 There is a profound conflict between names and quantifiers.

The problem of non-referring names, PN1, concerns terms like ‘Pegasus’ and ‘sake’ which look,
grammatically, as if they refer.  That there are such terms does not decide the matter in favor of
quantifiers, though, since we can easily form an existentially quantified statement which also seems to
commit us to the existence of Pegasus.  Both names and quantifiers may be used to reflect real and errant
commitments.  We can be clear about when we intend to use an empty name, in natural or artificial
languages.36  Similarly, the problem of diffusion of reference, PN2, is not an argument for eliminating
names, but an argument to be careful, in any language, when approaching questions of reference.

To the problem of not having enough names for all objects, PN3, we may respond by adopting an
infinite language with enough names, by dropping the presumption that every object have a name, or by
merely allowing infinitely long strings to serve as names.  Quine’s standard example for showing that
natural language does not have enough names for objects is the real numbers.  By Cantor’s diagonal
argument, any list of names of real numbers (e.g. in their decimal representations) is incomplete.  Still,
any decimal expression represents a real number and every real number can be written as a (possibly
infinitely long) decimal (or binary or otherwise) expansion.  Such representations of real numbers may be
seen as sufficient even though there are non-denumerably many real numbers.

Given the incompatibility of names and quantifiers, PN4, Quine favors languages which eschew
names.  But avoiding names makes Quine’s formal language less natural, since names are naturally taken
as indicating reference and worries PN1-PN3 are avoidable without eliminating them.  Quine
appropriately requires that theories be rigorously constructed if used to express commitments.  We must
beware of the sloppiness of ordinary language.  Quine’s counsel amounts merely to advice to be careful
with whichever language we choose.  We have to ensure that the language of our best theory expresses
the real commitments of that theory.  If we are clear about our commitments, the choice to include names
or not is arbitrary.  Independently of Quine’s preference for first-order logic, it is hard to see why names
should not be taken as indicating reference.

Quine’s argument for taking the existential quantifier as indicating commitment is based on its
natural equivalence with ‘there is’, but the argument from the naturalness of language is not categorical.
Naturalness is an equivocal guide.  Languages with names are more natural in that they are more
perspicuous.  Using names facilitates inference.  The naturalness of using the existential quantifier for

36 Azzouni, for example, urges the introduction of a special predicate for formal languages to
indicate when an existence assertion is to be taken literally.  See, for example, Azzouni 1998.
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‘there is’ is counterbalanced by the ease of using a familiar language with names.
We can adopt, for the purpose of revealing the commitments of a theory, a language less formal

than first-order logic, a language with names and no quantifiers.  In particular, we may use a cleaned-up
version of our ordinary language.  Indeed, our expressions of ontological commitment are generally
formulated first in natural languages.  We use these formulations as guides to understanding artificial
formal languages.  

Even if we must use a formal language as canonical, first-order logic is not the only option.

§3.2: First-Order Logic and Higher-Order Logics
Terms in quantificational logics contain two different syntactic places: for subjects and for

predicates.  These places may be filled by constants, ones which refer to particulars (either particular
objects or particular predicates), or by variables which must be bound by a quantifier in order to form a
closed term.  In first-order logic, only the subject terms may include variables; we never quantify over a
predicate position.  In higher-order logics, we may quantify over predicate positions, essentially (if
roughly) generalizing over properties.

Quine presents three concerns about higher-order logics.  

HOL1 Higher-order logics make too many commitments.  
HOL2 A constellation of technical results which hold for first-order logic fail in logics of

higher-order: the concurrence of a variety of definitions of logical truth, completeness,
that every consistent first-order theory has a model, compactness, and both upward and
downward Löwenheim-Skolem features.  

HOL3 Referential vagueness

Quine rejects higher-order logics in part for their ontological extravagance, HOL1, calling it,
“Set theory in sheep’s clothing” (Quine 1986c: 66).  Consider a sentence of second-order logic, SP.

SP Some properties are shared by two chipmunks.
(�X)(�x)(�y)(Cx C Cy C x�y C Xx C Xy)

The value of the two lower-case variables are objects, chipmunks.  The value of the upper-case
variable ‘X’, though, is not an ordinary object.  It is a property of an object.  For SP to be true, there must
exist two chipmunks and there must exist a property.  By quantifying over properties, we take properties
as kinds of objects; we need some thing to serve as the value of the variable, Platonic forms, perhaps, or 
eternal ideas.  The second-order sentence reifies properties. 

The least controversial way to understand properties is to take them extensionally, to be sets of
the objects which have those properties.  On an extensional interpretation, ‘blueness’ refers to the
collection of all blue things; the taller-than relation is just the set of ordered pairs all of whose first
element is taller than its second element.  Thus, second-order logic, in its least-controversial
interpretation, is some form of set theory.

Quine’s view is that we can include sets in our ontology if we think that there are mathematical
objects but that we need not include them under the guise of second-order logic.  We can instead take
them to be values of first-order variables.  We can count them as among the objects in the universe, in the
domain of quantification, rather than sneaking them in through the interpretations of second-order
variables.  Quine’s complaints about second-order logic, that it is set theory in sheep’s clothing, are based
on this sneakiness.

Quantification over properties in higher-order logics, though, may be seen as a virtue, in contrast
to Quine’s view.  It provides all the predicates we might need for science or mathematics.  Moreover, we
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need not take quantifications of variables attached to those predicates as indicating untoward or
unjustified commitments.

The quantifiers, whether of first-order or of higher-order logic, have two distinct roles: a purely
formal and syntactic inferential role and a translational role.  In their inferential role, they bind variables. 
They may be used or removed in deductions, allowing us to distinguish universal and existential claims.

The translational role of the quantifiers involves the uses we make of the formal theory and the
meanings we give to the quantifiers.  It is common to take, with Quine, the existential quantifier as
indicating existence.  We need not do so.  Instead, we can interpret them substitutionally, focusing only
on their inferential role.

Azzouni suggests separating the two roles.  First-order and higher-order logics force the
existential quantifier into an independent role, indicating existence, for which it is not uniquely fit. 
“Even if one accepts the idea that scientific theories must be regimented in first-order languages, nothing
requires the first-order existential quantifier...to carry the burden of ontological commitment” (Azzouni
1998: 3).

Abandoning the translational role of the quantifiers, and first-order logic as the language of
commitment, leaves the inferential role of the quantifier alone.  Worries about excessive commitments of
higher-order logics can thus be minimized by altering the way we read the commitments of a theory.

The technical virtues of first-order logic, HOL2, do not decide the matter, either.  For example,
the completeness which Quine believes favors first-order logic only entails that every valid formula is
derivable.  It does not mean that every intuitively valid inference is representable in first-order logic. 
There are intuitively valid formulas and inferences which are not valid in first-order logic.  First-order
logic with identity can not comfortably accommodate inferences to common properties of two
individuals, Frege’s definitions of numbers, and Leibniz’s identity of indiscernibles.   Consider the claim
EM1, a first-order expression of the logical law of the excluded middle. 

EM1 (�x)(Px w -Px)

That a similar sentence can be written substituting any predicate for ‘P’ is a higher-order fact,
which we can express as EM2

EM2 (��)(�x)(�x w -�x)

Quine rejects EM2, though he accepts every instance of it like EM1, with any predicate in the
place of ‘P’ (or given any interpretation of that predicate).  He thus prefers to take the ‘P’ in EM1 as a
schematic letter.  But EM2 provides a uniform representation of the underlying fact which is not present
in any sentence of the form EM1.

Moreover against the supposed adequacy of first-order logic, there are expressions whose
first-order logical regimentations are awkward at best.  Leibniz’s law, that identical objects share all
properties, seems to require a second-order formulation.  Similarly, H resists first-order logical treatment.

H Some book by every author is referred to in some essay by every critic (Hintikka 1973:
345).

H may be adequately handled by branching quantifiers, which are not elements of first-order
logic.  The completeness of first-order logic is a technical virtue which can make first-order logic useful. 
Higher-order logics which can accommodate such inferences may also be useful.

There are other limitations on first-order logic.  Regimenting a truth predicate in first-order logic
leads naturally to the paradox of the liar.  Propositional attitudes, like belief, create opaque contexts that
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prevent natural substitutions of identicals otherwise permitted by standard first-order inference rules. 
The technical virtues of first-order logic do not deflect these and other problems.  Still, defenders of
first-order logic have proposed a variety of solutions to these difficulties, some of which may not be due
to first-order logic itself, but to deeper problems with language. 

Quine complains that logics other than first-order logic may be referentially vague.  “The reason
for taking the regimented notation as touchstone is that it is explicit referentially, whereas other
notations, having other aims, may be vague on the point” (Quine 1986d: 534).  If we focus on a language
which is not Quine’s canonical notation, but with the same goal, to explicate existence, there is no reason
why that language need be vague.  If reference is diffuse, then we can be explicit about which uses of
terms are serious.  In all cases, we must be clear, antecedently, about our commitments.  But the concern
about vagueness is a practical one and can be mitigated by a variety of techniques for explicit
clarification in a variety of languages, including natural languages.

Quine’s objections to names and higher-order logics arise from his desire to formulate a single
canonical language in which to represent all commitments.  If we abandon that method, we may welcome
names in serious theories as indications of ontological commitments.  We may regiment into first-order
logic to clarify our meanings when semantic ascent is useful or to reveal deductive relations.  We may
use other formal languages when they suit our purposes.  Quine’s reliance on first-order logic arises from
overemphasizing its structural virtues.  These characteristics do not justify choosing that language as the
exclusive and somehow determinative way to reveal our commitments.

§3.3: The Regimentation of Commitment
The considerations of the previous two sections focus on the question of which language to

choose as canonical.  I have raised some general worries about Quine’s particular choice of first-order
languages: they have expressive limits and may not be properly tailored to the job of exclusively
representing our ontological commitments.  Now, I wish to consider some more general worries about
Quine’s procedure.

One reason to favor Quine’s method is because the clarity of formal languages can help reveal
the presuppositions of a theory and avoid our making errant claims.  We can regiment scientific theory
without consideration of its commitments.  We focus on generating a simple and elegant axiomatization. 
Then, we look to the regimented theory to reveal its existence claims, which are byproducts of a neutral
process.  Anyone who has invoked formal languages to reveal ambiguities in natural language knows that
the virtues of its precision are compelling.  Amb is ambiguous between an interpretation on which Duffin
is an American who teaches history one on which Duffin is a teacher of American history.  

Amb Duffin is an American history teacher

Amb1 and Amb 2 can be used to express the first and second interpretations, respectively, and do
not suffer the ambiguity of Amb on their intended interpretations.

Amb1 Ad C Tdh
Amb2 Tda

Similar examples abound.  
Reasoning using a formal language could, in principle, affect our independent beliefs about what

exists.  Mathematicians could discover new and interesting theorems by generating inferences using a
formal theory.  But mathematical reasoning does not generally work this way.  Regimentations are
mainly used as a check on informal reasoning.  Frege developed modern mathematical logic in pursuit of
a gap-free system of inference which could secure the results of mathematics, not as a tool for producing
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those results.  Of course, the resulting field of mathematical logic is itself a proper object of study.  But
our inherent interest in logic, in regards to other areas of mathematics, seems mainly for its relevance to
justification and foundation and, perhaps, to see connections among different areas of mathematics.  It is
not itself a tool for discovery in, say, abstract algebra or topology.

The benefits of mathematical regimentation may translate as well to the mathematical portions of
science.  But it is even more unlikely, if not impossible, that writing science in a formal, canonical
language would lead to any scientific advances.  Indeed, the complexity which would result from
translating scientific theories into formal languages debars such projects from being fruitful for
discovery.

The Quinean view of how we determine our commitments, the method underlying QI, is thus
misleading.  When we regiment, with Quine, to clarify the commitments of a theory, we permit
existential generalization only where we desire that the theory express commitment.  A nominalist with
respect to any kind of entity will cast his theory in a way which avoids commitments which a realist will
make.  For example, consider Quine’s rejection of propositional attitudes as “creatures of darkness”
(Quine 1956: 188).  We do not construct a semantic theory, and then notice whether it quantifies over
propositional attitudes.  We consider the world, and our minds, and make that decision.  But if we
abandon the view that regimenting our scientific language into first-order logic is the source of our
justification of our mathematical beliefs, the indispensability argument loses its force.

Quine recognizes the limitations of formal languages as tools for determining ontological
commitments and accepts that they are best seen as ways of clearly expressing those commitments.  “The
resort to canonical notation as an aid to clarifying ontic commitments is of limited polemical power... But
it does help us who are agreeable to the canonical forms to judge what we care to consider there to be. 
We can face the question squarely as a question what to admit to the universe of values of our variables
of quantification” (Quine 1960: 243).

The point here should be fairly obvious: translating ordinary language into regimented form can
aid clarity, but the regimented language is not protected from errant commitments.  Determining our
commitments is a task prior to regimentation.  We can regiment the existence of unicorns as easily as that
of horses.  Let us remember that one of the foremost developers of logic understood that formal
languages were not canonical, but merely useful for certain purposes.  

I believe I can make the relationship of my Begriffsschrift to ordinary language clearest if I
compare it to that of the microscope to the eye.  The latter, due to the range of its applicability,
due to the flexibility with which it is able to adapt to the most diverse circumstances, has a great
superiority over the microscope.  Considered as an optical instrument, it admittedly reveals many
imperfections, which usually remain unnoticed only because of its intimate connection with
mental life.  But as soon as scientific purposes place great demands on sharpness of resolution,
the eye turns out to be inadequate.  The microscope, on the other hand, is perfectly suited for
such purposes... (Frege, Preface to Begriffsschrift)

QI overextends our use of formal languages, especially in metaphysics.  Quine’s indispensability
argument alleges that we must admit mathematical objects into our ontology since they are required for
the regimentation of formal science.  Quine’s implication that we are forced to quantify over
mathematical objects is misleading.  We have already accepted mathematical theorems prior to
formalization or regimentation.  We do not merely examine the domain of quantification of the
regimented theory and discover them there.  We construct formal theory knowing the references of the
terms of the theory.  Our ontology is a constraint on regimentation, not a result of it.

As a final concern about Quine’s method of using formal languages to express our ontological
commitments, consider the last stage of the process of determining the commitments of a theory.  After
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formulating a preferred theory and regimenting it in our canonical language of first-order logic, we are
supposed to examine the models of our theory to determine its commitments.  This last step is the
essence of Quine’s slogan that to be is to be the value of a variable.

Quine defended taking first-order logic as canonical not only because it is refined and precise,
but also because it is also easily interpreted.  But he further denies that we should interpret ordinary
language at surface value.  Languages in which quantifiers have been translated away, or which do not
contain quantifiers, are unable, he believes, to generate an ontology.  For example, a finite theory which
contains names may eliminate quantifiers in favor of truth-functional connectives.  This type of theory,
Quine claims, will leave no ontic footprint.

Ontology thus is emphatically meaningless for a finite theory of named objects, considered in
and of itself... What the objects of the finite theory are, makes sense only as a statement of the
background theory in its own referential idiom.  The answer to the question depends on the
background theory, the finite foreground theory, and, of course, the particular manner in which
we choose to translate or embed the one in the other (Quine 1968: 63).

The problem Quine raises here applies to all languages.  A theory can not prescribe its own
interpretation.  We can only know the references of the names of a language lacking quantifiers by
indicating an interpretation.  Similarly, in a first-order theory, one must look to a domain of
quantification to find values of its variables.  Ontology is metatheoretic work.

These appeals to metalanguages generate infinite regresses of formalism.  If we want to know
what the names in the metalanguage refer to, we have to construct a model for the metalanguage, and so
on.  But if we want to know what the commitments of a theory are, we have to stop somewhere.  Quine’s
resolution of this matter is ontological relativity, that we have no absolute answers to ontological
questions.  “What makes sense is to say not what the objects of a theory are, absolutely speaking, but
how one theory of objects is interpretable or re-interpretable in another” (Quine 1968: 50).

Ontological relativity weakens QI.  Instead of justifying our mathematical beliefs, it justifies
beliefs in a theory which may or may not be interpreted as making such commitments.  The theory will
have other interpretations, given that first-order theories of the sort a Quinean prefers admit of non-
standard models.

To avoid ontological relativity, we could take the metalanguage of our first-order theory at
homophonic face value: read it directly and naturally.  But this pragmatic response is available for the
original theory, too, as Michael Devitt notes.  “We do not need to move into a metalanguage discussion
of our object-language claims to establish ontic commitment.  Indeed, if commitment could never be
established at the level of the object language, it could never be established at all” (Devitt 1984: 50). 
Indeed, the direct and natural reading is available for natural languages without appealing to formal
regimentation at all.

We have lots of ways to express commitments and to make statements whose commitments we
deny.  We can clarify matters at the level of the object language when pressed.  And we need not be
pushed into a metalanguage, whether our object language is natural or formal.  Quine defends the
simplicity of first-order logic, but it is hard to see exactly how first order logic is simple, beyond unifying
reference.  In some ways (e.g. its perspicuity) natural language is much simpler. 

Quine admits that we regiment only when useful.  “A maxim of shallow analysis prevails: expose
no more logical structure than seems useful for the deduction or other inquiry at hand...  [W]here it
doesn’t itch don’t scratch” (Quine 1960: 160).  But he uses this maxim as merely a practical guide.  We
eschew full regimentation only because we can envision what it would look like, and what its yield
would be.  If we have ontological questions, for Quine, we have to look at the fully formal framework.

Quine’s appeals to first-order logic as a canonical language produce a natural tension.  On the
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one side, they are essential support for QI: without the demand that we find the commitments of a theory
in its first-order regimentation by examining the domains of models of the theory, those who resist the
conclusion of QI have little reason to admit that the uses of mathematics in science must be taken
seriously; I will say more about this claim in the next chapter.  On the other side, it is difficult to believe
that any ontological questions can be settled by appeals to models of regimented theories.  Our
commitments arise prior to regimentation. 

Quine’s choice of first-order language is insufficient to establish that this language is the only
one in which we can express commitment.  Since there are other languages in which we can easily
express our ontological commitments, the inference to the existence of mathematical objects from the
need to quantify over them in our best, first-order-regimented theory does not follow.

§4: Whither QI?
QI relies on two factors about which I have raised doubts: confirmation holism and Quine’s

method for determining the ontological commitments of a theory, especially his preference for a
canonical language of first-order logic.  Quine’s holism, while perhaps applicable within empirical
science, has its limits.  Evidence from empirical theories does not extend to mathematical ones.  And we
are free to construct and interpret our formal theories as we wish.  We can adopt semantic ascent for
clarification without also believing that regimentation somehow forces our commitments.  Ontology need
not recapitulate philology.  Moreover, naturalism does not unambiguously favor the indispensability
argument by ruling out autonomous justifications for mathematical beliefs.

To my concerns about holism, the Quinean may naturally respond by digging in her heels: what
appears to be a difference in kind (between mathematics and empirical science) is really just a difference
in degree.  I believe the burden of proof is on the holist to provide evidence of cases in which we cede
mathematical beliefs in the face of recalcitrant empirical evidence.  Given standard mathematical and
scientific practice, such evidence is unlikely to be forthcoming.  When we find that mathematical theories
fail to apply in empirical science, as when space-time turned out to be hyperbolic rather than flat, we do
not cede our mathematical theories.

In response to the problems of appeals to first-order logic in QI, the Quinean may drop references
to a canonical language.  Instead, the Quinean may just argue from the preponderance of evidence:
mathematics is so widely used in science that it’s preposterous to think that science isn’t up to its ears in
mathematical commitments.  Such a move underlies the work of the most prolific contemporary Quinean
indispensabilist, Mark Colyvan.  In the next chapter, I will show that giving up QI3, appeals to Quine’s
specific procedure for determining ontological commitments, fully undermines QI.  Despite my
complaints in this chapter, the strongest version of the indispensability argument is one, like QI, which
specifies how we determine our commitments.  It is thus incumbent on the proponent of the argument to
defend Quine’s method or a reasonable alternative.



Chapter Four: The Weasel

In the previous chapter, I discussed some concerns about Quine’s holism and about his method
for determining ontological commitments.  These criticisms are general, applying to any use of Quine’s
method.  They do not presuppose any view of the indispensability argument or of mathematics.  They are
available to platonists and anti-platonists alike.

But the relevance of those concerns in this book is to the indispensability argument.  In
particular, the lesson we should learn from these criticisms is that, first, where confirmation holism may
or may not properly characterize the relationships among claims within empirical science, it does not
extend evidence from propositions of empirical science to the claims of formal sciences like
mathematics.  The indispensability argument, deprived of holism, is implausible.

Second, while Quine’s method for determining the ontological commitments of a theory is
useful, it should not be seen as somehow forcing us to believe in the existence of mathematical objects on
the basis of their utility in scientific theory.  The freedom we have to construct and interpret our best
theories limits the force of QI.  QI is supposed to push the avowed nominalist into a commitment to
abstract objects, but its leveraging force is illusory.

Recently, some philosophers have argued to the same end, that QI does not have the force that its
proponents believe it to have, whether or not QI4 holds (i.e. whether or not attractive first-order
formulations of scientific theories are available).  Philosophers including Joseph Melia and Mary Leng
deny QI3, Quine’s claim that the commitments of a theory are to be found in its existential
quantifications.  These recent critics of the indispensability argument claim that we can believe a theory
or portions of a theory without believing in the existence of all of the objects over which it existentially
quantifies.  In particular, they argue that our beliefs in the empirical portions of a theory need not extend
to the purely mathematical claims of that theory.

The view that we can baldly deny the mathematical portions of our empirical theories has come
to be known as weaseling or easy-road nominalism.37  Weaseling may be used as a defense of nominalism
against QI.  Since my focus in this book is on the contrast between indispensability platonism and
autonomy platonism, my interest in weaseling, as an anti-platonist response to the indispensability
argument, is limited.  Insofar as weaseling is used to support fictionalism, it is relevantly like the
fictionalist or reinterpretation strategies with which I am not concerned in this book.

But the weasel preys on a weakness of some formulations of the indispensability argument which
is worth examining and understanding for the autonomy platonist.  In this chapter, I show that QI
withstands the weaseling response, but that other, more recent versions of the argument do not.  More
importantly, the autonomy platonist can adopt the weaseling strategy while withstanding a Quinean
response to the weasel unavailable to the nominalist.

Let’s start by considering an early precedent for recent weaseling.

§1: The Original Weasel
The view that we need not believe all the claims of a theory which we generally do believe, and

in particular that we need not believe the mathematical claims of an empirical theory, traces back at least
as far as Carnap’s work.

A physicist who is suspicious of abstract entities may perhaps try to declare a certain part of the
language of physics as uninterpreted and uninterpretable, that part which refers to real numbers
as space-time coordinates or as values of physical magnitudes, to functions, limits, etc.  More
probably he will just speak about all these things like anybody else but with an uneasy

37 Weaseling strategies can also be found in the work of Azzouni, Balaguer, Maddy, Mortensen,
and Yablo.  See Colyvan 2010: 2.  Patrick Dieveney calls it Separatism; see Dieveney 2007: 113 et seq.
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conscience, like a man who in his everyday life does with qualms many things which are not in
accord with the high moral principles he professes on Sundays (Carnap 1950: 205).

Carnap defended the physicist’s uses of mathematics by distinguishing between contentful
internal questions and contentless external questions.  Internally, it is analytic and obvious that there are
numbers.  One we adopt mathematical theories, the existence of mathematical objects follows directly. 
We can, of course, question whether or not to adopt mathematical theories, but such questions are not
internal; they are not answered by examining the claims within the theory.  Instead, they are external
questions about whether to adopt a theory.

From the external perspective, the question of the existence of mathematical objects is, according
to Carnap, meaningless.  We might have pragmatic reasons to adopt mathematical language, but such
reasons are not properly scientific.  Thus Carnap eases the guilty conscience of the scientist by allowing
her to speak in two distinct modes.  We can choose to adopt mathematical language, in which case we
assert the existence of mathematical objects, or we can choose to reject mathematical language, in which
case we do not.  The answers to the internal question is easy and obvious.  The answer to the external
questions is just pragmatic and no indication of any facts about the world.

As we saw in Chapter Two, Quine responded to Carnap’s distinction by accusing his mentor of
double-talk: we can not on pain of contradiction speak equivocally.  If we believe a theory, we must
believe in its commitments, from the most natural to the most artificial.  There is no internal/external
distinction and no separation of questions about our choices of language and questions about what uses
of that language imply.

Field and other dispensabilists agree with Quine that we can not just deny some portions of a
theory which we otherwise esteem.  We must remove the mathematics from science if we hope to ease
consciences regarding abstract objects.  Underlying Quine’s position and that of his dispensabilist critics
are both his naturalism and his holism which support his denigration of double-talk.  There is no external
perspective from which to stand to evaluate linguistic frameworks.  Evidence for any part of a theory is
evidence for every part of the theory.

Other philosophers have attempted to revive Carnap’s view against the indispensabilist.  Mark
Balaguer, anticipating even more recent work, argues that fictionalists about mathematics can adopt a
position on which mathematics merely provides a theoretical apparatus for empirical scientists to make
claims about the physical world; our mathematical assertions can be seen as different in kind from other
assertions of a theory.38  The two most forceful recent proponents of weaseling are Melia and Leng and I
will focus on their defenses of the strategy.

§2: Melia’s Weaseling Strategy
Melia attempts to reclaim Carnap’s attitude toward the uses of mathematics in science without

his more general view concerning linguistic frameworks.  He claims that the proper interpretation of
scientific theories which include mathematical theorems does not take the mathematical references
seriously.  We should, rather, interpret mathematicians and scientists as taking back all prima facie
commitments to abstracta.  “It is quite common for both scientists and mathematicians to think that their
everyday, working theories are only partially true” (Melia 2000: 457).

Melia’s weasel accepts that mathematical claims are ineliminable from scientific theory but
maintains that we need not believe that such claims are true or that mathematical objects exist.  The
weasel can accept, say, that vectors in Hilbert space are indispensable to the practice of quantum
mechanics.  The weasel just adds that we can, when speaking most seriously and parsimoniously, deny

38 See Balaguer 1998: Chapter 7, §3.3.
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that our best theory really posits them.  Thus, the weasel denies QI3, Quine’s claim that our ontological
commitments are (all of) those objects over which we first-order quantify in our best theories.

Melia defends the weaseling strategy by claiming, as Balaguer did, that scientists use
mathematics merely to represent or express facts that are not representable without mathematics. 
Mathematics, for Melia, is just a tool for communicating or representing non-mathematical claims. 
When constructing theories of the physical world, it is sometimes necessary for us to invoke
mathematics.  We should not be misled by such invocations into beliefs in mathematical objects. Such
representations are not supposed to be ontologically serious.  “The mathematics is the necessary
scaffolding upon which the bridge must be built.  But once the bridge has been built, the scaffolding can
be removed” (Melia 2000: 469).

Melia begins by noting that we can easily reformulate theories to avoid quantification over
mathematical objects if we ignore constraints on the languages used in the resultant theories.  Such
reformulations may not result in theories that are as elegant or compelling as the originals.  For example,
consider a trivial rewriting: just take standard scientific theories and eliminate any sentence which claims
that there are mathematical objects.  Such a theory would be awkward and gerrymandered.  It would not
be elegantly axiomatized.  But it would not quantify over mathematical objects.  

To make the theory which results from a trivial reformulation slightly less awkward, we could
use a Craigian re-axiomatization to show that the new theory is recursively axiomatizable.39  Field
considered and rejected this strategy for eliminating mathematics for science.  Such theories, even in
their Craigian reformulations, are unattractive.  They ignore the structure of standard scientific theories. 
Still, the debatable ugliness of the resultant theory is irrelevant to the question of whether we can
eliminate mathematical references from standard science; we can.

Even if he is right, in a very short time we have come a long way from the view that
quantification over abstracta is indispensable.  Quantification over abstracta can be dispensed
with - and easily dispensed with at that - but the theories which do quantify over abstracta are
more attractive than the theories which don’t.  This is a considerably weaker claim and one much
more vulnerable to a nominalist assault (Melia 2000: 458).

Melia’s own reasons for rejecting such trivial strategies of nominalization depend on a purported
counter-example to the trivial strategy.  Melia constructs a simple mereological theory T and shows that
extending T by adding set theory to it, even (he claims) adding it conservatively, allows us to derive
further nominalistically-acceptable consequences.  Melia’s construction uses model theory, and the
cleavage between model theory and proof theory to construct the result.  Melia claims that his
construction shows that we can not merely remove the mathematics from physical theories without losing
inferential strength.

There can be more to the nominalist consequences of a theory than the set of sentences entailed
by that theory in the nominalist vocabulary.  If the nominalist simply takes his theory to be the
set of nominalistically acceptable sentences entailed by some platonist theory, he has no
guarantee that his theory actually has the same nominalist content as the platonist theory (Melia
2000: 461).

39 Craig’s reaxiomatization theorem says that any recursively enumerable set of well-formed
formulas of a first-order language is recursively axiomatizable.  Thus, we can delete particular sentences
from any (elegantly formulated) first-order scientific theory (say, the ones with existential quantifications
over mathematical objects) and re-axiomatize the remaining (awkward) theory recursively.
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At their strongest, mereological theories, the logics of parts are wholes, are equivalent to second-
order logic and its full theory of sets.  At their weakest, they are tempting to nominalists.  The relations
of parts to wholes is less controversial than the theory of sets.  But, those relations aren’t quite as
uncontroversial, or purely logical, as the theory of identity, which is ordinarily included among first-
order logic.  Thus, mereology is somewhere between pure logic and full mathematics.  

Melia’s mereological theories are thus not first-order logical.  They include claims about
combinations of regions among their logic and include variables that range over regions and their
mereological sums.  Mereology contains significant mathematical ontology and ideology, built-in.

Again, this is not the place to evaluate competing strategies for eliminating mathematics from
scientific theories.40  But it is useful to notice the strategy used by Melia since it illustrates, specifically,
the importance of QI3, Quine’s choice of a canonical language, in the indispensability argument.  It is
fairly easy to invoke alternatives to first-order logic to rid a first-order theory of its quantifications over
mathematical objects without anything like a Field-style reformulation of science.41  For example,
Burgess and Rosen sketch a rewrite which uses predicate functors to replace quantification.  Appeal to
such theories is laughable as a way to avoid mathematical commitments.  The change in logic obscures
the theory’s commitments.  Without settling carefully on how we are to determine the ontological
commitments of a theory, without agreeing on a canonical language, we can construct theories which
seem to make no mathematical commitments but which are really just obfuscating.

Still, Melia’s goal is to demonstrate the failure of this trivial strategy in order to introduce an
even-more trivial strategy.  His neo-Carnapian weaseling strategy consists of a simple denial of the
existence of mathematical objects, whatever the quantifications of whatever theory.  He posits a
hypothetical nominalist who prefers standard theories, with their mathematical axioms, because of their
inferential strength, but who also rejects the mathematics used in those standard theories.

Joe does not simultaneously hold contradictory beliefs.  Just because, in the process of telling us
his beliefs about the world, Joe asserts all the sentences of T* [the mereological theory which
includes mathematical axioms], it does not follow that Joe believes all the sentences of T*. 
Indeed, since Joe believes there are no abstract objects, he will explicitly say that T* is false
(Melia 2000: 467).

Compare Melia’s view to that of an earlier philosopher.

Some contemporary nominalists label the admission of variables of abstract types as
“Platonism”.  This is, to say the least, an extremely misleading terminology.  It leads to the
absurd consequence, that the position of everybody who accepts the language of physics with its
real number variables (as a language of communication, not merely as a calculus) would be
called Platonistic, even if he is a strict empiricist who rejects Platonic metaphysics (Carnap 1950:
215, emphasis added).

To support his revival of Carnap’s view, Melia provides a helpful analogy for those, like Quine
and Field, who believe that weaseling is double-talk.  Consider the two-dimensional surface of a sphere. 
From a three-dimensional perspective, we can, simply and elegantly, describe the surface as the locus of

40 See Daly and Langford 2010 and Melia 2010 for the continuing debate over whether Melia’s
counter-example to the trivial strategy succeeds.

41 See Burgess and Rosen 1997: 186-7.



AP and the IA, Chapter Four: The Weasel, page 56

all points equidistant from the center of the sphere.  In order to describe the spherical surface, we appeal
to the center point of the sphere and its three-dimensional properties.  But the center is not part of the
two-dimensional surface.  From the point of view of the surface of the sphere, we can appeal to the center
despite its not being part of the world.  “We do successfully and unproblematically describe a particular
non-Euclidean world by taking back some of the implications of what we earlier said” (Melia 2000: 468).

Similarly, consider Melia’s story about angels and stars, his riff on a story of Putnam’s.42  “In
charge of each star is an angel, no two angels are in charge of the same star, and at the precise moment
that each star is created the corresponding angel is also created.  Moreover, the angels in charge of stars a
and b were created at the very same time” (Melia 2000: 470).

From the story of the angels, we can infer that two stars are created at the same time, even though
the story never says so.  Melia’s weasel, who tells the story, is a nominalist about angels so he retracts all
the consequences about them.  But he can continue to hold the inference about the stars, which he
believes exists, seeing the talk of angels as merely instrumental.

In Melia’s angels example, we can easily eliminate references to the undesirable objects by
saying directly that there are two stars created at one time.  Melia’s primary claim, though, is that in
stating that claim in terms of angels, and then taking back the parts of the claim that refer to angels, one
is not speaking incoherently or in a contradictory manner.  One is speaking poetically or metaphorically
but not inconsistently as long as one is clear about one’s real commitments, weaseling away the non-
literal portions of one’s speech.

Melia claims that our ability to weasel is fortunate since nominalistic reformulations of our best
theories are not always available.  That’s why reliance on the less-trivial strategy of reformulating one’s
theory to eliminate all insincere references is unacceptable for the committed nominalist.  “Sometimes,
we just cannot say what we want to say first time round.  Sometimes, in order to communicate our picture
of the world, we have to take back or modify part of what we said before” (Melia 2000: 468-9).

Melia really makes two distinct claims.  First, the indispensabilist’s invocation of aesthetic
criteria in developing our scientific theories entails that arguments like QI are weaker than they appear to
be.  The attractiveness of a theory can be evaluated in different ways, with different outcomes, especially
regarding mathematical references.

Second, in part because of the looseness introduced by appeals to attractiveness, the Carnapian
denial of some portion of a theory we otherwise believe (i.e. the mathematical portion) is not
inconsistent.  Properly understood, the content of our scientific theories does not include mathematics.

Regarding the first claim, Melia erroneously infers that the indispensabilist has a choice whether
to believe in the existence of all the objects over which we first-order quantify from the fact that we use
aesthetic and pragmatic considerations in choosing among theories.  As I showed in Chapter Two, the
looseness of our choice of theory does not entail, for the Quinean, that there is any looseness in the
choice of whether to believe in the objects which that best theory posits.  For the indispensabilist, there is
no perspective external to scientific theory from which to choose among various formulations of a theory. 
The indispensabilist engages the important question of which language to use as canonical independent
of which theories are best.  Once our language is chosen and our best theory is selected, we have no
choice about its yield.

But Melia’s mistaken inference is independent of the plausibility of his second claim, that
weaseling is not self-contradictory.  It is also independent of the high plausibility of its premise, that
aesthetic criteria are relevant to our choices of which theories to believe.

We are often faced with competing theories.  Sometimes these theories are empirically
equivalent: no evidence favors one over another.  In such cases, we may suppose ourselves to be like

42 See Putnam 1975a: 74-5.
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Buridan’s ass between the two theories, unable to choose.  Mere counsel to favor simplicity lacks
categoricity.  Quine’s method directs us to consider the immanent virtues of the theories such as
simplicity and elegance.  Some theories are simpler ontologically.  Some theories are simpler in
formulation.  These factors of simplicity are in many cases inversely proportional: the simpler the
ontology the more complex the formulation (and vice-versa). 

Melia claims that we should prefer ontological simplicity over formulational simplicity.  He
compares a theory he calls T1, which has no numbers (in object positions) but lots of numerical
predicates (‘is six cm long’, ‘weighs eight pounds’, etc.), to another theory, T2, which accomplishes the
same tasks with few predicates and an arithmetic ontology.

I accept that considerations of simplicity play an important role in theory choice.  But I prefer the
hypothesis that makes the world a simpler place.  For sure, all else being equal, I prefer the
simpler ontology.  For sure, all else being equal, I prefer the theory that postulates the least
number of fundamental properties and relations.  But the simplicity I value attaches to the kind of
world postulated by the theory - not to the formulation of the theory itself (Melia 2000: 473).

Quine, with his stated Okhamist preference for desert landscapes would agree with Melia’s
preference for the ontologically simpler theory, all else being equal.  But, it does not seem to the
indispensabilist as if all else is equal in this case.  For Melia’s T1, every distance relation is a different
property.  For T2, the same predicate may be used for any distance since we can use mathematical objects
to differentiate measurements.

We can, it is true, reduce ontology (values of the variables) at the expense of ideology
(predicates).  Thus, one must be very careful to choose a proper language.  As Quine says, our choices of
language are not distinguishable from our choices of what we say is the fundamental nature of the world. 
“The quest of a simplest, clearest overall pattern of canonical notation is not to be distinguished from a
quest of ultimate categories, a limning of the most general traits of reality” (Quine 1960: 161).

Quine and Melia agree that parsimony is important in choosing a theory.  But Melia urges that a
reduced ontology is more important than elegance of formulation where Quine believes that the two
factors can be weighed against each other.  Still, it is impossible to formulate precise guidelines for when
and how to adopt a mathematical ontology in order to achieve gains in elegance.

I’ll turn to another approach to adjudicating the debate between the indispensabilist and the
weasel after looking at a related weaseling proposal from Mary Leng.

§3: Leng’s Recreational Weasel
Like Melia, Leng defends a weaseling version of mathematical fictionalism against the

indispensability argument.  Relying on the work of Maddy and Sober describing the relationship of
scientific practice and attitudes toward mathematics, criticisms of the extension of holism to this
relationship which we saw in Chapter Three, Leng presents three characteristics of mathematics with
regard to science, which I will call insularity, Euclidean rescue, and bridging.

[Insularity] 1. Mathematics is insulated from scientific discoveries, in the sense that the
falsification of a scientific theory that uses some mathematics never counts as
falsification of that mathematics (beyond simple cases of calculation error).

[Euclidean Rescue] 2. In particular, a scientific observation that conflicts with some scientific
theory may suggest a move to a different background mathematics, but does not suggest
that mathematicians should abandon that mathematics...The success of a scientific theory
does not confirm the mathematics used in that theory.
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[Bridging] 3. What does seem to be disconfirmed by the failure of a scientific theory that relies
strongly on a background mathematics is the claim that this mathematics is applicable to
the scientific phenomena that it has been used to describe (Leng 2002: 411).

As we saw in Chapter Three, Sober’s argument against Quine’s holism derives from the
observation that in practice we never choose to give up the logical or mathematical principles.  This
practical fact is not contentious.  Quine explains that fact as the consequence of a methodological
principle of theory choice which he calls the maxim of minimum mutilation: we hold logical and
mathematical principles fixed in order to do as little damage as possible to other portions of our theory. 
Leng, following Sober, takes the fact that we never give up our mathematics in light of recalcitrant data
to indicate that mathematics is insulated from science at the most basic level.

The term ‘Euclidean rescue’ comes from the work of Michael Resnik.  Before the nineteenth
century, people generally thought that there were only one geometry.  When it became clear that there
were consistent, non-Euclidean spaces, some philosophers and mathematicians denigrated them as
somehow lesser theories.  Such people sometimes thought of non-Euclidean geometries as consistent but
false or uninterpreted.  When it became clear that physical space is non-Euclidean, in the early twentieth
century when relativity supplanted classical mechanics and flat Euclidean geometry was replaced by a
curved, hyperbolic space-time, some philosophers inferred that hyperbolic geometry is true and
Euclidean geometry is false or uninterpreted.  In retrospect, both claims to prefer on geometry over others
appear un-mathematical.  Neither has been vindicated.  From the mathematician’s perspective, there is no
reason to prefer one or the other geometry.

We perform a Euclidean rescue when we resist distinguishing among different geometric theories
in terms of their applicability and we accept all three consistent geometries that result from the three
different parallel postulates as equally true.  In this paradigmatic case, the Euclidean rescue entails that
the discovery of which geometry is actually applied in our space is irrelevant to the truth of the
mathematical theory.

It is...difficult to maintain that the empirical discoveries confirmed the truth of non-Euclidean
geometry and showed the falsity of Euclidean geometry in any sense other than that one was a
correct model of the physical world and the other was not.  But this is not mathematical truth: the
applicability of non-Euclidean geometry did not falsify any mathematical theorems in Euclidean
geometry - the Pythagorean theorem still holds for Euclidean triangles - it merely confirmed the
assumption of Gauss and others that the scope of the theorems of Euclidean geometry only
covers systems that assume the parallel axiom (Leng 2002: 402).

Euclidean rescues are not limited to this one case.  They are available in all cases in which a
mathematical theory is shown inapplicable in science.  Leng cites the case of catastrophe theory. 
Initially, the mathematical theory called catastrophe theory was thought to have profound implications
for physical science.  Later, it was seen not to apply as broadly as was initially thought.  Still, the
mathematics itself was not impugned.

Euclidean rescues are related to insularity in that if one thinks that mathematics is insular, then
one is predisposed to perform Euclidean rescues.  One might perform Euclidean rescues because one
thinks that mathematics is and should be held insular.

Similarly, Euclidean rescues are supported by Bridging.  For a mathematical theory to be used in
a physical theory, there must be bridge principles which map some mathematical claims into some
physical claims.  When one finds an inconsistency in one’s physical theory, one can always restore
consistency without falsifying one’s mathematical claims by denying just the bridge principles and not
the actual mathematical theorems.  By denying only bridge principles, we perform a Euclidean rescue,
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holding mathematics to be insulated from falsification of an empirical theory.  In Leng’s case of
catastrophe theory, only the bridge principles, the claims of its applicability to physics, were denied. 
“Catastrophe Theory became a much less popular area of research, but no one would claim that the
mathematics of Catastrophe theory had been falsified by its magnificent scientific failures” (Leng 2002:
407).

Leng’s fictionalist proposal rests both on her exploitation of the tension in Quinean naturalism,
which we saw in §3.1, and these three characteristics of the relation between mathematical practice and
science.  It also relies on Quine’s attitude toward the mathematics which is not used in empirical science. 
Quine calls such unapplied mathematics recreational. 

My view of pure mathematics is oriented strictly to application in empirical science...Pure
mathematics extravagantly exceeds the needs of application...but I see these excesses as a
simplistic matter of rounding out...I recognize indenumerable infinites only because they are
forced on me by the simplest known systematizations of more welcome matters.  Magnitudes in
excess of such demands, e.g., áù or inaccessible numbers, I look upon only as mathematical
recreation and without ontological rights (Quine 1986a: 400).

Strictly speaking, the indispensabilist has no justification for beliefs in mathematical claims that
are not used in physical theory.  There is some room for extending our beliefs in the disjoint pieces of
mathematics that are applied in science to full mathematical theories.  There is no room for beliefs in
portions of mathematics which have no relation to our empirical science.  Quine and the fictionalist agree
that such sub-theories of mathematics are false or merely vacuously true.  Mark Colyvan follows Quine
in appealing to a fictionalist interpretation of the un-applied portions of mathematics.43

Leng’s proposal is simply to extend the fictionalist attitude to all of mathematics.  From the
characteristics of Insularity, Euclidean Rescue, and Bridging, Leng concludes that mathematics plays
merely a modeling role in science.  Mathematical theories lack any serious ontological rights because
they are used merely as models, without any presumption that they are true or refer to real objects.

When we use mathematics to model physical situations in this way, we never refer to
mathematical objects or assume the (mathematical) truth of their relations.  Rather, we interpret
our mathematical stories physically and assume that our model is good enough in the relevant
respects that the theorems derived in our mathematical recreations, when transcribed into
physical language, will give us truths about the physical phenomena we are considering...If
Colyvan is right (and I think he is) that mathematics that is not assumed by science to be true
should be seen as recreational (and given some important status as such), then it follows from the
modeling picture of the relationship between mathematics and science that all mathematics is
recreational (Leng 2002: 411-412).

Later, Leng discusses the modeling aspect of mathematical objects in terms of their ability to
represent physical objects.

We are not committed to belief in the existence of objects posited by our scientific theories if
their role in those theories is merely to represent configurations of physical objects.  Fictional
objects can represent just as well as real objects can (Leng 2005: 179).

43 See Colyvan 1998: 56.
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Where Quine claimed that un-applied portions of mathematics could be considered recreational,
Leng argues that all of mathematics should have that status.  There is no mathematical reason to
distinguish between applied and un-applied results in mathematics and the work of mathematicians and
scientists need not entail our beliefs in the truth of mathematical claims.  Like Melia’s weasel, Leng’s
defense of recreation revives the Carnapian double-talk of denying that our beliefs in the empirical
portions of a theory which includes mathematical axioms extends to the mathematical claims of that
theory.

§4: The Weasel at Work
We have seen two different kinds of support for the revival of Carnapian weaseling against the

indispensability argument.  Melia argues that denials of aspects of our assertions (or portions of a theory)
are ordinary ways in which we take back some unacceptable portion of a claim (or theory) which is only
constructible with the use of that unacceptable portion.  Leng argues that the indispensabilist’s
understanding of unapplied mathematics as recreational or ontologically unserious, is best extended to all
of mathematics.  Both of these claims are mere denials of QI3, Quine’s claim that the ontological
commitments of a theory are to be found in all and only its existential quantifications.

Quine, responding to Carnap and anticipating the neo-Carnapian strategy, attempted to block
such weaseling with his double-talk argument, as we saw in §2.3.  Where Melia claims that double-talk is
not inconsistent, Quine insists that the surface contradiction is not to be dismissed as a mere way of
speaking.  Where Leng invokes the limitations of the indispensability argument to extend to un-applied
portions of mathematics, Quine insists that only the unapplied portions are recreational; our
commitments to the mathematical theorems used in science and the objects to which they refer is
unequivocal.  How are we to decide in favor of either Quine or the weasel?

In the next section, I argue that Quine’s double-talk argument suffices to reject the weaseling
strategy when used against QI.  But the weasel has some teeth and is effective against a wide variety of
indispensability arguments, ones which abandon QI3 or otherwise fail to specify (in a clear and
unequivocal way) how we are supposed to determine the ontological commitments of our theories.  The
feature of QI which distinguishes it from other versions of the indispensability argument is Quine’s
insistence on specifying the details of how and when we are to be taken as speaking most seriously about
our ontological commitments.  These details arise out of a combination of his holism and his naturalism,
as well as his methods for determining and representing our ontological commitments.  The broad way in
which the indispensability argument is sometimes represented masks these central claims.

As an example of an indispensability argument which may succumb to weaseling, consider
Colyvan’s version.

CIA 1. We ought to have ontological commitment to all and only those entities that are
indispensable to our best scientific theories.

2. Mathematical entities are indispensable to our best scientific theories.
Therefore:
3. We ought to have ontological commitment to mathematical entities (Colyvan 2001:

11).

Colyvan’s first premise does not answer the question of when an entity is indispensable to our
best theory: How does a theory make its posits?  How do we read those posits?  Are all the posits made in
the same way, with the same force?  By suppressing Quine’s criterion for ontological commitment,
Colyvan’s argument is liable to weaseling criticisms based on these questions.

For example, a nominalist can respond to CIA by accepting that, say, vectors in Hilbert space are
indispensable to the practice of quantum mechanics, indeed that we quantify over such vectors in our best
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theories, but adding that we can, when speaking most seriously and parsimoniously, deny that our best
theory really posits them.  Indeed, Melia’s claim that one can weasel out of the indispensability
argument, accepting that mathematics is ineliminable from scientific theory but maintaining that we need
not believe that mathematical objects exist, is precisely an effective response to CIA. 

Colyvan argues that any easy-road strategy actually presumes a hard-road strategy behind it.  If
we lack a way of showing how to eliminate references to the unwanted entities in a story, the story loses
its sense.  We couldn’t understand The Lord of the Rings without the hobbits.  It is misleading sloppiness
to assert a theory which includes poetic metaphor and not indicate precisely where an account is to be
taken as literal. 

We can change the story we are narrating by adding or subtracting minor details, but we can
hardly be thought to be telling a consistent story (or in some cases, any story at all) if we take
back too much.  In short, there are limits to how much weaseling can be tolerated...I simply do
not know what to make of sentences such as [There exists a differentiable function that maps
from the space-time manifold to the real numbers, but there are no mathematical objects] where
no obvious paraphrase presents itself (Colyvan 2010: 10-11).

Colyvan’s objection to the weaseling strategy is indefensibly strong.  Pace Colyvan, it is clear
what the weasel wants to say: the references to mathematical objects within our scientific theories are to
be taken as merely instrumental, not serious, and the uses of mathematics in science should not give us a
reason to believe that mathematical objects exist.  Colyvan’s denial that he can make sense of the
weasel’s claim can not be taken seriously.

The underlying and more important objection to weaseling is the one that Quine already makes to
Carnap: the double-talk objection.  Indeed, CIA includes an implicit appeal to Quine’s argument in its
use of ‘all’ in its first premise: We ought to have ontological commitment to all and only those entities
that are indispensable to our best scientific theories.  The weasel can deny the first premise by pointing
out that some entities over which our theories naturally quantify may be reasonably taken to be
instrumental posits.  Indeed, as Batterman 2003 argues, asymptotic reasoning which involves idealizing is
essential to much of science.  The indispensabilist must respond by defending the premise.  Claiming that
the weasel’s claims are nonsense is insufficient.

The weasel can accept Colyvan’s first premise by arguing that even if mathematical axioms are
essential to our formulations of our best scientific theories, our commitments to the objects to which
those axioms (and the theorems which follow from them) refer are not to be seen as indispensable to
those theories.  The weasel claims that even ineliminable uses of mathematical sentences should not be
taken as grounds for belief in those sentences, taken literally.  Yes, says the weasel, we should have
ontological commitment to all and only those entities that are indispensable to our best scientific
theories.  But mathematical entities are not indispensable to our best theories because those theories
should not be taken as indicating serious commitments to mathematical objects.

Indeed, Azzouni, whose work Colyvan also characterizes as weaseling, makes exactly this
claim.44  He argues that we can distinguish among our commitments to a theory’s posits.  We have
observational access to thick posits (e.g. apples, trees) and excuses for not being able to observe thin
posits, like objects outside of our light cone.  So, we should believe in the thick and thin posits of a
theory.  In contrast, Azzouni claims that we should not believe in the existence of posits, like

44 Azzouni distinguishes his claims from those of Melia and other weasels.  He claims to deny
Quine’s method where Melia and others like Yablo merely evade it.  See Azzouni 2012: §1.  This
difference is not relevant here.
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mathematical objects or centers of mass, which we can call very thin, the result of mere casual talk
(Azzouni 2004: Chapter 6).  

Colyvan responds to Azzouni’s weaseling with a demand for criteria to distinguish the serious
from the casual posits.  “Whether [mathematical objects] are thin or very thin depends on what can count
as an excuse for not being accessed thickly...  Unfortunately Azzouni doesn’t give us any guidance; he
offers no systematic story about acceptable excuse clauses” (Colyvan 2010: 7).  In order to adjudicate
between weasels and indispensabilists we need a general account of when we are speaking seriously.

§5: Speaking Seriously in Mathematics
The weasel preys on a weakness in indispensability arguments which do not insist explicitly on a

method for determining the commitments of a theory.  To defend itself from weaseling attacks, the
indispensabilist must make a clear and explicit case about when and where to find one’s ontological
commitments, about when we are taken to speak most seriously.

To illustrate the problem a bit more carefully, consider that the autonomy platonist believes that
we are speaking most seriously in pure mathematics.  Mathematicians say things like, “There are
infinitely many primes.”  When we take such claims at face value, the inference to the existence of
mathematical objects is manifest.  Call the direct inference from pure mathematical sentences to the
existence of mathematical objects the mathematical-practice argument.

Alan Baker, calling deference to the practice of mathematicians strong mathematical naturalism,
observes that such deference renders the indispensability argument moot (Baker 2003: 63-4).  The
proponent of the traditional indispensability argument engages the difficult question whether
mathematical objects are required in our best scientific theories.  But mathematical objects are obviously
required for face-value interpretations of mathematical theories.  The defender of the mathematical-
practice argument has no need to wonder whether uses of mathematics are eliminable from our scientific
theories or explanations or practices.

The central problem with the mathematical-practice argument is that we require justification for
taking mathematical practice itself, the claims of pure mathematics, seriously.  Even if we accept
mathematical practice generally, the references to mathematical objects by mathematicians in their work
may be unserious.  Their posits may be, as Azzouni alleges, ultrathin.  To understand how thin the
mathematician’s posits may be, consider the work of Geoffrey Hellman (Hellman 1989) and Charles
Chihara (Chihara 1990) in reformulating mathematical claims as modal claims.  For Hellman,
mathematical claims which are naturally and most literally seen as referring to objects are really
assertions about possible structures.  For Chihara, such claims are really references to possible
inscriptions.  The work of Hellman and Chihara is meaningful precisely because we need not take
mathematical claims at face value.  Michael Potter extends the point: “What mathematicians say is not
always a reliable guide to what they are doing: what they mean and what they say they mean are not
always the same” (Potter 2007: 18).

The weasel argues that we can interpret both mathematicians and scientists as taking back all
prima facie commitments to abstracta.  If we want to know whether the use of some theory or discourse
commits us to the existence of mathematical objects, and we want to avoid begging the question, we need
an independently-motivated account of when we are speaking most seriously.  Colyvan’s indispensability
argument is most charitably interpreted as including an implicit appeal to such an account.  But, it
succumbs to the weasel precisely because of its neglect of QI3, Quine’s procedure for determining when
we are speaking most seriously.  Many indispensabilists ignore QI3.45  Such elision opens the argument
to attacks from the weasel.

45 Liggins 2008 and Resnik 2005 are notable exceptions.
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§6: Quine Against the Weasel
Quine’s indispensability argument is of central importance in the philosophy of mathematics

because of how it attempts to reconcile two conflicting but natural intuitions, about the security of
mathematical beliefs and the exhaustiveness and sufficiency of science to tell us what there is.  The
autonomy platonist favors the first intuition and the weasel nominalist favors the latter and no mulish
proponent of either side is likely to be swayed by arguments.  But we should evaluate those arguments
anyway and to do so we must see them in their full strength.  I take Quine’s argument to be
indispensability at full strength.

A significant and perhaps underappreciated aspect of Quine’s argument is its insistence not just
on the controversial doctrines of naturalism and holism, on at least some interpretations of those terms,
but also on the need to speak seriously, to settle on a canonical language and use that for debates about
what there is.  We cannot, says Quine, succumb to mulish defenses of our untutored intuitions.  By
insisting that we speak most seriously in our canonical formulations of our best scientific theory, Quine
preemptively blocks the weasel.

For an example of how Quine’s argument resists weaseling, consider the role of debates over
simplicity in evaluating the indispensability argument.  Colyvan and other indispensabilists argue that
standard scientific theories with their mathematical tools are simpler than nominalist alternatives, like
those of Field.  The nominalist versions require gerrymandered physical axioms to do the work
(especially of measurement) that elegant mathematical theories can do more simply.  Melia argues that
the indispensabilist is favoring the wrong kind of simplicity: a simpler theory rather than a simpler world.

Simplicity is a notoriously context-sensitive criterion for theory evaluation, as recent work
especially by Elliott Sober shows.46  Applications vary by sub-discipline within science and by particular
context.  It seems impossible to settle on a categorical application of the criterion, as Wesley Salmon
argues.

The most reasonable way to look at simplicity, I think, is to regard it as a highly relevant
characteristic, but one whose applicability varies from one scientific context to another. 
Specialists in any given branch of science make judgments about the degree of simplicity or
complexity that is appropriate to the context at hand, and they do so on the basis of extensive
experience in that particular area of scientific investigation. Since there is no precise measure of
simplicity as applied to scientific hypotheses and theories, scientists must use their judgment
concerning the degree of simplicity that is desirable in the given context (Salmon 1990: 186).

Salmon does not conclude that there is something unscientific about the concept of simplicity. 
His conclusion, which I take to be the proper one, is that applications of the concept of simplicity in
theory choice are complicated and context-sensitive.  The complexity of the concept of simplicity is
relevant to the indispensability argument because such aesthetic considerations within science must be
evaluated in order to settle on a theory from which to read one’s ontological commitments.  If the concept
of simplicity is too plastic, it is easy for the weasel to claim, as Melia does, that simplicity speaks in the
nominalist’s favor.

QI, with its insistence on a specific method of determining the commitments of a theory, can
block, at least to some extent, weaseling based on the plasticity of ‘simplicity’.  If the indispensabilist
insists that our best theories are as close to first-order as possible, then we can refine and distill the
complexities of the concept of simplicity.  The indispensabilist can insist that simplicity in constructing
the theory is to be understood as minimizing the number of its distinct predicates or that simplicity in

46 See Sober 1996.
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constructing our model is to be understood as minimizing the number of objects in the domain.  These
clear criteria may not be categorical in favor of a unique theory.  But they severely restrict the weasel’s
latitude.  Without such criteria, without any refinement of the criterion of simplicity, the weasel roams
free.

To sum up, let’s remind ourselves of QI.

QI QI1. We should believe the theory which best accounts for our sense experience.
QI2. If we believe a theory, we must believe in its ontological commitments.
QI3. The ontological commitments of any theory are the objects over which that theory

first-order quantifies.
QI4. The theory which best accounts for our sense experience quantifies over

mathematical objects.
QIC. We should believe that mathematical objects exist.

If the weasel says that we need not believe our theories, QI1 denies that we can avoid such belief. 
If the weasel says that we can believe a theory without believing that the objects to which the theory
refers really exist, QI2 denies that we can make such discrimination.  If the weasel says that we can
differentiate between legitimate and merely instrumental posits, QI3 provides a specific method, neutral
to prejudice about what exists and deferential to the actual workings of science, for revealing the
commitments of a theory.

Anyone can merely deny that the commitments of a good scientific theory impel belief in the
mathematical quantifications of that theory.  Whether such a response is compelling or mere gainsaying
depends in part on whether its proponent presents a defensible alternative method for determining one’s
ontological commitments.  An eleatic who defends a causal criterion for ontological commitment may
have some standing against QI3.  Some weasels do appear to have such an alternative criterion in mind. 
But if the weasel hopes to convince the indispensabilist to give up the argument, she must defend the
alternative criterion.

Whatever the weaknesses of QI are, it is not the mere expression of a preference for a
mathematical ontology and it can not be refuted by the weasel’s mere preference for a simpler world.

§7: Autonomy Platonism and the Weasel
The weasel denies the legitimacy of any inference from the applications of mathematics to its

justification.  The indispensabilist’s central response is the double-talk argument: one can not use the
tools of mathematics in our most sincere empirical theories without also taking the references of
mathematical terms seriously.  The weasel responds that double-talk is ordinary scientific practice;
instrumentalism is standard operating procedure and mathematical objects are so obviously not the kinds
of things that exist that to take mathematical terms to refer is absurd.

If the topic of this book were whether the indispensability argument succeeds in convincing the
fictionalist to believe in mathematical objects, we would have to pursue further the question of whether
the eleatic weasel can present a viable alternative to Quine’s criterion and thus defend instrumentalism. 
But the subject of this book is a contrast between the indispensabilist and the autonomy platonist.  What
can the autonomy platonist take from this debate between the indispensabilist and the weasel?

The role of Chapter Three is to show that there are problems with the arguments underlying QI
which should be apparent to philosophers with all sorts of views about mathematics, to nominalists as
well as platonists.  The role of this chapter is to show some problems with the argument from the
instrumentalist’s perspective.  Instrumentalists tend to be nominalists about mathematics.  But one need
not be an anti-platonist to believe that the inference from the applications of mathematics to their
justification does not follow.  The autonomy platonist agrees with the weasel that the inference is invalid.
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Still, there is something uncomfortable about the double-talk that Melia and other weasels
defend.  Colyvan seems correct to claim that there are limits to what one can take back from a story
without turning it into nonsense.  The strength of Quine’s indispensability argument arises in part from
his proper insistence that we cannot invoke the physicist’s theoretical commitments to electrons as
reasons to believe in electrons without also being serious about the references to mathematical objects
used in those theories.  One’s natural suspicion of the existence of abstract objects can only go so far. 
Melia claims that our expressive resources may be too impoverished to say what we want to say without
invoking mathematics.  But we must, at some point, speak seriously.   Weaseling remains awkward
despite the instrumentalist’s assurances. 

Autonomy platonism, as we will see, provides a middle ground.  It allows justification of
mathematical beliefs which does not depend on the applications of mathematics in science and so allows
us to avoid double talk about the mathematical references in our theories without also taking those uses
of mathematics as grounds for our beliefs.  Insofar as the weasel finds the arguments for autonomy
platonism persuasive and consistent with her position, they may be considered friendly amendments to
the weasel’s cause.  Insofar as the weasel denies the success of QI, or weaker versions of the
indispensability argument, the autonomy platonist can sympathize.  But insofar as the weasel is interested
in defending some version of anti-platonism, the autonomy platonist can not agree.  

One might believe that the autonomy platonist, being a platonist, would welcome an argument,
like QI, for platonism.  In the next chapter, we will put both the problems for QI from Chapter Three and
the criticisms from instrumentalists aside to look at some concerns about the yield of the argument from
the autonomy platonist’s perspective.  By the end of the next chapter, it should be clear why the
autonomy platonist must reject the indispensability argument.



Chapter Five: The Unfortunate Consequences

§1: Traditional Platonism
In Chapter Two, I presented in detail what I take to be the strongest version of the

indispensability argument, QI.  In Chapter Three, I discussed what I take to be the major weaknesses of
QI.  For the purposes of this chapter, I will set aside those criticisms, grant the soundness and validity of
QI, and look at the purported yield of the argument, which beliefs the argument justifies even when we
read it most charitably.  I show that even if QI were successful, even if the indispensabilist can defend
naturalism, holism, and the Quinean criterion for determining the ontological commitments of a theory,
the argument yields an anemic version of platonism, one which suffers from what I call the unfortunate
consequences of the argument.

The goal for those who defend the indispensability argument is often to convince the nominalist
to be a platonist.  In this chapter, I have a different goal.  I want to show the platonist who has cottoned to
the indispensability argument that s/he’s getting a raw deal.

I start by characterizing a traditional view of mathematical objects.  Though I broadly
characterized that traditional view in Chapter One, I will now specify it, in part by characterizing the
objects of mathematics more clearly.  While some readers may find the traditional conception
contentious, I claim that it is defensible, that it is possible to establish with an autonomy platonism, and
that the indispensability argument does not justify mathematical beliefs as traditionally conceived.

For simplicity, I focus the characterization of mathematical objects on sets.  By doing so, I adopt
some common, though not universal, presumptions about the reducibility of all mathematical objects to
sets.  Critics of the reductive presumption include structuralists motivated by Benacerraf 1965, which
reasonably denies the existence of a unique reduction.  In another direction, category theorists may hold
that mathematical reductions should point instead to more fundamental categories.  But nothing I say
depends on the reductive presumption; all my claims could be generalized to any pure mathematical
objects.

Sets are abstract objects, lacking any spatio-temporal location.47  The universe of sets is
described by various standard axiomatizations; where different axiomatizations conflict we find
disagreement about the nature and extent of the set-theoretic universe.48  Their existence is not contingent
on our existence, nor is it contingent on the existence of any physical objects.  (I speak here of pure sets. 
The existence of sets with ur-elements, sets of grey dogs or kings of France, is contingent on such
objects.)

Furthermore, mathematics is a discipline autonomous from empirical science; mathematical
standards are independent of the uses of mathematics in science.  We do sometimes pursue mathematics
in order to solve specific problems in empirical science.  But we have criteria for determining whether to
accept a mathematical assertion which are independent from the application of that assertion to empirical
science.

Mathematical methodology largely proceeds a priori.  There are empirical aspects to
mathematical methods, of course: knowledge of who proved which theorems, say, and observations of
inscriptions.  We may even come to believe a mathematical claim on empirical grounds.  But, such
empirical claims do not suffice for mathematical justification.  A mathematical proof is independent of
any empirical grounds.

47 Attempts to locate mathematical objects with their concrete members lead to substantial
difficulties, as Frege argued against Mill (see Frege 1980, §7-§9), and as Mark Balaguer argues against
Penelope Maddy (see Balaguer 1994).

48 Or universes.  Balaguer 1998 argues that any consistent axiomatization truly describes a
universe of sets, even if it conflicts with other consistent axiomatizations; see Chapter Nine.
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Each of the properties of sets or traditional mathematics that I have mentioned has been denied of
mathematical objects, just as the existence of mathematical objects has been denied.  Still, these
characteristics constitute, at least in part, the standard starting point for discussions of the nature of
mathematics and mathematical objects.  They are consistent, for example, with what James Robert
Brown calls the “mathematical image” and with Stuart Shapiro’s traditional picture.49  I have described,
though not defended, the traditional view.  My goal here is to show that the indispensabilist can not
support this view.  Later, I argue that the autonomy platonist can support the traditional view.  So for
those for whom the traditional view is appealing, autonomy platonism is preferable to one based on the
indispensability argument.

§2: The Indispensabilist’s Mathematics
In Chapter 1, I described the following essential characteristics of any indispensability argument

which concludes that we should believe that mathematical objects exist.

IPC1: Evidentiary Naturalism: The job of the philosopher, as of the scientist, is exclusively to
explain or account for our sensible experience of the physical world; all evidence is
sense evidence.

IPC2: Theory Construction: In order to explain our sensible experience we construct a theory, or
theories, of the physical world.  We find our commitments exclusively in our best theory
or theories.

IPC3: Mathematization: Some mathematical objects are ineliminable from our best theory or
theories.

IPC4: Subordination of Practice: Mathematical practice depends for its legitimacy on empirical
scientific practice.

These essential characteristics entail some unfortunate consequences for the mathematics to
which the indispensability argument refers.  Most of these unfortunate consequences have been noticed
and discussed elsewhere, but it is worthwhile to collect them here.50

§2.1: Restriction
First, since Mathematization and Evidentiary Naturalism rule out any alternate justifications for

mathematical claims, the indispensabilist has no commitments to mathematical objects which are not
required for empirical science.  Call this consequence Restriction.

It is difficult to say precisely which mathematical objects the indispensability argument would
justify, i.e. how much mathematics empirical science actually needs.  Burgess and Rosen suggest that
there is historical consensus that science needs no more than analysis.  Feferman 1998 argues that
predicative set theory will suffice.  The point at which the indispensabilist draws the line between
justified and unjustified mathematical beliefs is unimportant here.  What is relevant is the existence of a
division, one which Quine embraces.  “I recognize indenumerable infinities only because they are forced
on me by the simplest known systematizations of more welcome matters.  Magnitudes in excess of such
demands, e.g.,  áù or inaccessible numbers, I look upon only as mathematical recreation and without
ontological rights” (Quine 1986a: 400).

49 See Brown 1999: 1-7 and Shapiro 2000: 21-23.

50 “The [indispensability] argument certainly does not provide a stairway to Platonic Heaven”
(Decock 2002: 246).



AP and the IA, Chapter Five: The Unfortunate Consequences, page 68

There are really three problems of Restriction.  First, the existence of a division, with no
mathematical basis, between justified and unjustified mathematical beliefs is itself counter-intuitive. 
This oddity appears both to the autonomy platonist and to some anti-platonists.  For example, Leng,
attempting to extend Quine’s view about mathematical recreation to all of mathematics, argues against
Quine’s division.51

The second problem is that the restrictions on the indispensabilist do not merely apply to the
outer regions of set theory.  Justifications of mathematical claims vary with shifts in our best scientific
theory.  As science progresses, and uses new mathematical tools, the mathematics which is justified can
grow.  These changes can occur though no mathematical progress need be made.

Lastly, the third problem of Restriction is that such changes can, in principle, decrease the scope
of legitimate mathematics.  Maddy 1992 suggests that all of science could, in principle, become
quantized.  In such circumstances, we could lose justifications for our beliefs about the real numbers,
even though no mathematical problem with the theory of real numbers is discovered.

§2.2: Ontic Blur and Causality
A second unfortunate consequence, call it Ontic Blur, arises directly from Theory Construction,

which entails that the indispensabilist can not differentiate between abstract and concrete objects.  The
indispensabilist’s theory is constructed to explain or represent phenomena involving ordinary objects. 
“Bodies are assumed, yes; they are the things, first and foremost.  Beyond them there is a succession of
dwindling analogies” (Quine 1981: 9).

As these analogies dwindle, the abstract/concrete distinction blurs.  Indeed, the terms ‘abstract’
and ‘concrete’ become rather meaningless for the holist, vulgar terms in which the learned may only
lightly indulge.  As Parsons notes, 

Although Quine makes some use of very general divisions among objects, such as between
‘abstract’ and ‘concrete’, these divisions do not amount to any division of senses either of the
quantifier or the word ‘object’; the latter sort of division would indeed call for a many-sorted
quantificational logic rather than the standard one.  Moreover, Quine does not distinguish
between objects and any more general or different category of ‘entities’ (such as Frege’s
functions). (Parsons 1983: 377)  

 Furthermore, Quine himself wonders if such distinctions are sustainable.

[O]dd findings [in quantum mechanics] suggest that the notion of a particle was only a rough
conceptual aid, and that nature is better conceived as a distribution of local states over
space-time.  The points of space-time may be taken as quadruples of numbers, relative to some
system of coordinates... We are down to an ontology of pure sets.  The state functors remain as
irreducibly physical vocabulary, but their arguments and values are pure sets.  The ontological
contrast between mathematics and nature lapses.  (Quine 1986a: 402)

For Quine, the abstract/concrete distinction must be made within science.  The indispensabilist’s
naturalism, required to leverage the empiricist into beliefs in mathematical theorems, debars a first-
philosophical perspective from which to make an abstract/concrete distinction, from which to develop
theories of different categories of objects.  And scientific theory does not support the distinction.  The
quantifier univocally imputes existence.  All commitments are made as values of bound variables.

51 See Leng 2002: §6.



AP and the IA, Chapter Five: The Unfortunate Consequences, page 69

It is tricky even to formulate a precise version of the abstract/concrete distinction: intermediary
objects (e.g. space-time points, games, the equator) undermine some typical attempts.  The
indispensabilist thus emphasizes the continuity among posits of a physical theory, from ordinary objects,
to atoms, to quarks, to strings, to space-time points, to sets and numbers.  There is, for the
indispensabilist, no clear boundary between physical and mathematical objects as there is no boundary
between real and merely instrumental posits.

As the abstract-concrete distinction erodes, so does the causal/non-causal distinction. 
Independently of the indispensability argument, we can establish a criterion for abstractness, e.g. on the
basis of what Balaguer calls the principle of causal isolation (PCI) of mathematical from empirical
objects.  With an epistemology for mathematics separate from that for empirical science, the claim that
mathematical objects are distinctly abstract is more plausible.  But, PCI is off limits to the
indispensabilist.  In fact, Ontic Blur is precisely the rejection of PCI.  Balaguer even sees it as definitive
of the indispensability argument.  “The Quine-Putnam argument should be construed as an argument not
for platonism or the truth of mathematics but, rather, for the falsity of PCI” (Balaguer 1998: 110).

So it is not clear that the indispensabilist’s mathematical objects lack causal powers.  Ordinary
scientific theories do not include predicates indicating which objects have causal powers and which do
not.  So there is no reason to believe that the references of terms in pure mathematical theorems included
in an empirical theory are excluded from the causal realm.  Minimally tractable objects like space-time
points may have minimal causal powers, depending on one’s account of causation.  The same holds for
the indispensabilist’s mathematical objects.  “The indispensability argument may yet be compelling, but
it would seem to be a compelling argument for the existence of entities with causal powers” (Cheyne and
Pigden 1996: 641).

Of course, the indispensabilist can call mathematical objects abstract and other objects concrete
and it is typical, even for indispensabilists, to deny that mathematical objects have causal powers.52  We
can even introduce a predicate into a canonical language to indicate those classifications, though it is
difficult to imagine what work such a predicate would do.  For example, it could not be invoked to
indicate any difference in the ways we know about such objects.  But it is not clear how the
indispensabilist may ground such an assertion beyond mere fiat.  Such fiat would contradict the basic
tenets of the indispensabilist argument that our scientific theories are designed to explain our sense
experiences and not to explain, as ends in themselves, mathematical phenomena.  

It is thus no accident that many indispensabilists accept Ontic Blur or even invoke it to support
their argument.  

§2.3: Modal Uniformity and Temporality
When we combine Theory Construction with Mathematization, we find that the

indispensabilist’s mathematical objects do not exist necessarily.  Mathematical objects are posited to
account for our experience of a world which exists contingently.  If the world were different, if it
contained different physical laws, then scientific theory could require different objects.  Call this
consequence Modal Uniformity.

To illustrate Modal Uniformity, suppose that charge is a real property of particles in this world
properly measured by real numbers.  The indispensabilist thus alleges that the world contains continuous
functions.  Further, suppose that in a different possible world, there are no continuous properties.  In that
world, charge and all other properties are accurately and satisfactorily measured using rational numbers,
eschewing continuity.  In that world, says the indispensabilist, there are no continuous functions. 
Whether there are continuous functions in any particular world depends on the contingent fact of whether

52 See, for example, Baker 2005: 234.
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the world contains properties with particular qualities.
All hope for modality may not be lost for the indispensabilist.  There are several notions of

necessity.  When one asserts that the world is possibly Newtonian, even if relativistic, one may refer to a
physical necessity on which phenomena in accord with scientific laws follow necessarily.  Perhaps more
strongly, a statement may be logically necessary, which may be construed as entailing a contradiction
when negated, or as being either a logical law or following from one.  And perhaps even more strongly, a
statement may be metaphysically necessary, or true in all possible worlds.  Kripke alleges that some
identity statements, ones flanked by rigid designators, like the identity of water and H2O, are
metaphysically necessary.  Some naturalists claim insight into Kripkean metaphysical necessities. 
Perhaps the indispensabilist could claim, similarly, that some mathematical claims are necessary.  

There are two reasons to be skeptical about an indispensabilist’s attempt to avoid modal
uniformity by appeal to Kripkean metaphysical necessities.  First, the indispensabilist’s naturalism would
seem to debar such claims.  Explanations of Kripkean metaphysical necessities tend to rely on a
non-naturalist a priori intuition unavailable to the indispensabilist.  Second, even if the indispensabilist
could establish that some mathematical identity statements are metaphysically necessary, it would not
follow that mathematical objects exist necessarily, or that we should believe that they do.

By linking the justifications for our beliefs in mathematics to the physical world, the
indispensabilist may retain a weaker modality, like physical necessity, for mathematical claims. 
Unfortunately, the weaker notion is not the one traditionally imputed to mathematics, and is
unsatisfactory from the traditional perspective.  It would follow that under a different set of physical
laws, two and two might not equal the square root of sixteen.  While this idea may be alluring to some, it
seems absurd.  Only a stronger necessity will do justice to intuitions that mathematical truths are broader
than physical ones.

As a corollary of Modal Uniformity, mathematical objects are temporal too.  For, if mathematical
objects exist contingently, then there can be a time when they do not exist.  If the existence of continuous
functions depends on the existence of continuous physical quantities, then if the physical quantities were
to be extinguished, the mathematical functions would disappear as well, and would have to be removed
from our list of commitments.  Moreover, since no other objects to which scientific theory refers are
atemporal, the indispensabilist has no grounds for calling indisets atemporal.  Again, mathematical
objects are traditionally taken to be atemporal.  “It would betray a confusion to ask, ‘When did (or when
will) these primes exist?  At what time may they be found?’” (Burgess and Rosen 1997: 21).53

The temporality of the indispensabilist’s mathematical objects apparent also from considering
Ontic Blur.  The best accounts of the abstract/concrete distinction rely on the atemporality of abstract
objects.54  Since the indispensabilist can not defend the claim that mathematical objects are abstract, s/he
can not use that claim to support the atemporality of mathematical objects.

53 David Lewis called the non-spatiotemporality of sets an unofficial axiom of set theory.  See
Lewis 1993: 13; also see Paseau: 2008: 302.

54 “An object is abstract just in case it lacks both spatial and temporal location and is
homogeneous in this respect.  An object is concrete just in case it has spatial or temporal location and is
homogeneous in this respect” (Katz 1998: 124).  One distinct advantage of Katz’s distinction is his
ability to account for objects intermediary between abstract and concrete: artworks, games, natural
languages, the equator.  Katz classifies such objects as composite, generated by a creative relation
between abstract and concrete objects.
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§2.4: The Indispensabilist’s Methods
While it is traditional to ascribe to mathematics an a priori methodology, the indispensabilist

only provides an epistemology for empirical science.  This single epistemology also entails that the
indispensabilist’s mathematical objects are, like concrete objects, known a posteriori.  Indeed, many
indispensabilists, like Quine, are motivated by a desire to avoid a priori epistemology.

Lastly, Subordination of Practice entails that any mathematical debate, like that over the axiom
of choice, should be resolved not on mathematical terms, but on the basis of the needs of science. 
Chihara criticizes this indispensabilist subordination of mathematical practice.  “It is suggested [by
Quine] that which mathematical theory we should take to be true should be determined empirically by
assessing the relative scientific benefits that would accrue to science from incorporating the
mathematical theories in question into scientific theory.  It is as if the mathematician should ask the
physicist which set theory is the true one!” (Chihara 1990: 15).

For another example, consider the introduction, by Cardan, of complex numbers as solutions to
quadratic equations with missing real roots.  So-called imaginary, or impossible, numbers were derided,
despite their mathematical uses.  Complex numbers simplified mathematics, since ad hoc explanations
about why certain quadratic equations had two roots, others just one, and others none, were avoided.  A
fruitful field of study was born with geometric, graphical representations.  The theory of complex
numbers was not found to contain any inconsistency aside from the conflict with a presupposition that all
numbers were real numbers.  Physical applications were later discovered, for example in representing
inductance and capacitance as the real and imaginary parts of one complex number, instead of as two
distinct reals.

For the mathematician, the legitimacy of complex numbers came early.  The indispensabilist,
prior to the discovery of their applicability, could not accommodate them.  Even the analogy with
negative numbers, which arose from similar disrepute, serves as no argument for the indispensabilist. 
Lacking application, work with complex numbers was just mathematical recreation.

The indispensabilist will describe the discovery of an application for any mathematical objects as
one of an empirical confirmation of its existence.  Not all mathematical objects will be as lucky as the
complex numbers.  Consider two conflicting mathematical theories, like ZF + CH and ZF + not-CH (in
any of the many different ways it can be denied).  It is possible, in this case and others like it, that neither
theory will admit of application in empirical theories and thus of confirmation for the indispensabilist.  It
seems safe to presume that there will not be application for all of the transfinitely many, presumably
consistent axiomatizations which result from adding axioms asserting different sizes of the continuum to
ZF.  There is no mathematical reason not to multiply set-theoretic universes.  Perhaps there are multiple
set-theoretic hierarchies; in some the continuum hypothesis holds, while in others it fails, and in different
ways.  The indispensabilist, committed to austerity in abstracta, adopts a mathematical theory only when
it has physical application.

The problems of Subordination of Practice are even worse for theories which seem to suffer from
empirical disconfirmation.  Subordination of Practice entails that the indispensabilist’s appeal to
Euclidean rescues is limited.  As we saw in §4.3, we naturally perform a Euclidean rescue any time a
mathematical theory loses application in science.  In such cases, the indispensabilist generally rejects the
newly-unapplied mathematics.  The traditional response is the Euclidean rescue, unless the mathematics
is shown inconsistent.

We can be sure that mathematicians working today in the farthest reaches of pure set theory do
so without knowing that their work has any physical application.  One may arise, or their work may never
find use in empirical science.  If the only justification for mathematics is in its application to scientific
theory, then unapplied results are unjustified, even if they may eventually be useful.  The indispensabilist
makes the mathematician dependent on the scientist for the justification of his or her work.
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§3: The Unfortunate Consequences
Summarizing the results of the previous section, given the essential characteristics of the

indispensability argument, the following are thus unfortunate consequences:

UC1  Restriction: The indispensabilist’s commitments are to only those mathematical objects
required by empirical science.

UC2  Ontic Blur: The indispensabilist’s mathematical objects are concrete.
UC3  Causality: The indispensabilist’s mathematical objects may have causal powers.
UC4 Modal Uniformity: The indispensabilist’s mathematical objects do not exist necessarily.
UC5  Temporality: The indispensabilist’s mathematical objects exist in time.
UC6  Aposteriority: The indispensabilist’s mathematical objects are known a posteriori.
UC7  Methodological Subservience: Any debate over the existence of a mathematical object

will be resolved, for the indispensabilist, by the needs of empirical theory.

Given the unfortunate consequences together with the traditional characterization of
mathematical objects, it is clear that the indispensability argument does not justify beliefs in
mathematical objects, even if our best scientific theory includes mathematical axioms.  The
indispensabilist’s so-called mathematical objects retain none of their traditional characteristics.  Still, the
indispensabilist asserts that any regimentation of physics will require set-theoretic axioms in order to
provide the required functions.  So, what are the objects which satisfy these axioms, if not mathematical
objects?

The inclusion of mathematical axioms in a theory is no indication that the theory is committed to
mathematical objects.  Theories do not determine their own models.  Moreover, lots of objects can serve
as models of mathematical axioms.  Appropriately arranged peas can serve as models of finite portions of
number theory.  Field 1980 proposes using space-time regions to model geometry, including an axiom of
continuity.  Of course, peas will not suffice for ZF, but some less tractable and more plenitudinous
objects can.

Quine urges a doctrine of gradualism from observable objects like trees, through sub-visible
objects like electrons, to space-time points and sets.  The central point of this chapter is that just as
space-time points are not mathematical objects, neither are the indispensabilist’s sets.  They are ordinary
empirical posits, somewhat less tractable, but no different in kind, than trees.

I hesitate to coin a name for these concrete, contingent, temporal, known-a-posteriori denizens of
the indispensabilist’s restricted universe.  Still, a name will help us distinguish them from real sets. 
‘Quasi-sets’ is taken.  One might call them ‘indisets’.  Indisets are concrete and temporal empirical
posits, which unlike space-time points lack spatial location.  As set theory may be used to generate all the
objects of pure mathematics, so indisets may be used to generate all the objects of applied mathematics.

I disdain the profligacy which leads me, tentatively, to introducing a further category of objects
into our ontology.  But the introduction of objects to model applied mathematics is independently
motivated by considerations of physical geometry.  The objects which model our pure physical geometry
seem to lie between space-time points and pure geometric points.  They are the indispensabilist’s
geometrical posits.  

Given the results of Chapter Three, there are questions whether the indispensability argument
can justify belief even in indisets and other objects of applied mathematics.  But, the indispensability
argument surely does not justify belief in mathematical objects.

§4: Other Quinean Indispensability Arguments
Because its earliest proponents never constructed a precise indispensability argument, everyone

who writes about the argument formulates it for her/his own purposes, and so gives the argument certain
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idiosyncratic attributes.  Some versions are explicit about the argument’s reliance on naturalism or
Quine’s criterion for commitment.  Some versions leave those premises implicit or suppress them.  As we
will see in the next chapter, some version even imprudently try to eschew appeals to holism.  To this
point, we have examined what I take to be the strongest version of the argument, QI, and I have been
ascribing this version of the argument to Quine.  Before we proceed to examine more of the unfortunate
consequences facing this argument, let’s pause to look at two related versions of the argument, ones
which not only have the essential characteristics of indispensability arguments but which, like QI, adopt
Quine’s holism.  

Mark Colyvan presents an influential version focused on the core claims.

CIA 1. We ought to have ontological commitment to all and only those entities that are
indispensable to our best scientific theories.

2. Mathematical entities are indispensable to our best scientific theories.
Therefore:
3. We ought to have ontological commitment to mathematical entities (Colyvan 2001:

11).

In CIA, holism is the ‘all’ portion of the first premise and naturalism is the ‘only’ portion, so
those commitments are fairly explicit.  Colyvan suppresses Quine’s invocation of a method for
determining the ontological commitments of our theories, but I take him to have no deep disagreement
with Quine over how we determine the commitments of a theory.

Michael Resnik characterizes holism and naturalism in a version of the argument explicitly
dependent on them.55

Confirmation Holism: The observational evidence for a scientific theory bears upon the
theoretical apparatus as a whole rather than upon individual component hypotheses.
Naturalism: Natural science is our ultimate arbiter of truth and existence.
...
Mathematics is an indispensable component of natural science; so, by holism, whatever evidence
we have for science is just as much evidence for the mathematical objects and mathematical
principles it presupposes as it is for the rest of its theoretical apparatus; whence, by naturalism,
this mathematics is true, and the existence of mathematical objects is as well-grounded as that of
the other entities posited by science (Resnik 1997: 45).

Like CIA, Resnik’s Quinean argument lacks an explicit appeal to the ways in which we
determine the commitments of a theory.  But it is clear that Resnik’s argument also adopts the essential
characteristics.  Thus both Colyvan’s CIA and Resnik’s Quinean argument suffer the unfortunate
consequences.  They may justify belief in some limited mathematical theories most aptly modeled by the
contingent and temporal indisets.  But they can not justify robust beliefs in mathematical theories or
mathematical objects.

§5: Embracing the Unfortunate Characteristics
The Unfortunate Characteristics are important to keep in mind when evaluating the

indispensability argument.  The argument, if successful, would justify, to some degree, beliefs in the

55 Resnik also develops a non-holistic version of the argument which I discuss in the next
chapter.
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theorems of the portions of mathematical theories which must be included in our best scientific theory. 
But the objects which we can posit to model those theorems are odd.

But complaints such as UC1-UC7, while compelling to the traditional platonist and the autonomy
platonist, do not suffice to reject the indispensability argument.  Indeed, some indispensabilists embrace
some of the unfortunate characteristics.  Quine embraced Restriction in the division between legitimate
mathematics and recreational mathematics, as we saw in §4.3, and Ontic Blur, as we saw in §5.2.2.  In
rejecting modalities, Quine may be seen as embracing Modal Uniformity, though his position is more
properly described not as embracing one modal status but rejecting all modal claims.

More recent indispensabilists have explored other of the Unfortunate Consequences.  Maddy
presents what she calls a modified indispensability argument on which the mathematical beliefs which
are applicable in science are justified directly by their use, but the unapplied portions of mathematics are
justified indirectly, via their relations to those beliefs which are directly justified.  She calls the modified
indispensabilist’s mathematical beliefs a posteriori.

[T]he indispensability theorist should adopt some version of [the claim that there is a determinate
answer to open mathematical questions].  Notice, however, that this acceptance of the legitimacy
of our independent question and (for the modified theorist) the legitimacy of its pursuit is not
unconditional; it depends on the empirical facts of current science.  The resulting mathematical
beliefs are likewise a posteriori and fallible (Maddy 1992: 285).

Maddy seems to confound two distinct characteristics: the purportedly a posteriori nature of
mathematical beliefs and their fallibility.  As I mentioned in Chapter One, the most plausible account of a
priori knowledge is fallibilist; mathematical beliefs can be held a priori without our believing that they
are infallible.  But Maddy may just be rightly sensitive to the ways in which the mathematics yielded by
an indispensability argument, even her modified argument, inevitably suffers the unfortunate
characteristics.

Colyvan presents an extended defense of the empirical nature of mathematics.56  Since the
question whether mathematical knowledge is a priori or empirical is a central point of disagreement
between the autonomy platonist and the indispensabilist, it is worth a moment to examine Colyvan’s
arguments against the apriorist’s account.  Colyvan frames his argument in part as a response to Bigelow
who argues that G, for example, can be believed a priori. 

n
G 3  (2j - 1) = n2

j=1

Bigelow provides a pictorial proof of the equation which involves arranging objects like pebbles
in a series of shapes called gnomons.57 

Against, Bigelow, Colyvan despairs of an explication of ‘a priori’ which would support the such
a characterization of the proof.

[H]e clearly does not intend the traditional (Kantian) sense, in which a priori knowledge is

56 Colyvan 2001: Chapter Six.

57 See Colyvan 2001: 119; Bigelow and Pargetter 1990: 350-1; and Kline 1972 (vol. 1): 28-34 for
discussions of the gnomons at issue.
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gained independently of experience, for no matter how you cash out ‘experience’, gazing at and
manipulating pebbles must count as experience. Some other accounts of “a priori” on offer are:
(1) a priori knowledge is rationally unrevisable; (2) a priori knowledge involves necessity in
some way (either as a necessary condition, a sufficient condition or both); or (3) a proposition is
a priori if one is justified in believing it once one understands it (Colyvan 2001: 120).

None of the three numbered characterizations of a priori knowledge in this quote are plausible. 
Any account of the a priori must be fallibilist in order to be plausible.   The unrestricted set-theoretic
axiom of comprehension, for example, may plausibly be held a priori.  But it has turned out to be false
(since it leads to contradiction) and so not necessarily true.  But the falsity was discovered by further a
priori reasoning and so should not lead us to revise our claims about the basis on which one (Cantor, say,
or Frege) believed it initially.58  So any plausible account of a priori knowledge could not entail either
unrevisability (1) or necessity (2), though it might be the case that a priori beliefs are necessarily true if
they are true. 

The characterization of an a priori belief as one that is justified once one understands it, (3), is
more plausible.  But understanding comes in degrees which do not seem proportional to the degrees to
which a belief is justified.  I have some measure of understanding, of, say, the axioms governing Woodin
cardinals.  I had a greater understanding of them when I was studying set theory carefully.  I can achieve
a greater understanding of them by going back to my notes and texts.  But I do not know if I am justified
in believing that there are Woodin cardinals, in large part because I am not sure how to think about the
existence claims of many large cardinal axioms.  There is just too much work on those axioms and their
relationships left to do.  Whatever my degree of understanding of a proposition, my justification for
believing that proposition seems to be an independent matter.

The first characterization of the a priori which Colyvan considers is even more plausible, but he
seems to misunderstand it and put it to poor use in rejecting Bigelow’s claim.  Colyvan claims that since
manipulating pebbles counts as experience, we can not consider that picture proof as a priori in the sense
of knowledge gained independently of experience.  There are two problems here.  First, no plausible
account of a priori knowledge could deny that some experience is relevant to our understanding.  That
we have visual experiences of inscriptions of a token of a proof, for example, does not undermine the a
priori status of that proof.

Second, Colyvan seems to be committing a genetic fallacy of confusing the origins of our beliefs
with their justifications.  A characterization of a priori knowledge as independent of experience does not
entail that our beliefs have to be acquired without experience; that would be an impossible and quixotic
task.  Even having thoughts is, in some sense, having experience.  A proper characterization of a priori
knowledge as independent of experience merely entails that a belief held a priori admits of justification
which does not depend exclusively on empirical evidence.59  Much remains to be said about a priori
knowledge, and I will say more in Chapter Nine about what I take to be an a priori capacity of
mathematical intuition.  But Colyvan dismisses the possibility of such knowledge by examining only
implausible characterizations.

Colyvan’s characterization of mathematics as empirical, though, need not depend on his rejection
of the apriorist account.  That mathematics is empirical (or a posteriori) follows directly from the
indispensability argument, as one of the Unfortunate Characteristics.

58 For a similar account, see Bealer 1998.

59 See, for attempts to cash out this characterization even further: Bonjour 1998 and Casullo
2003.
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Colyvan embraces not only the claim that mathematics is empirical, but that mathematical
theorems are contingent.  Colyvan hints at two arguments for the contingency of mathematical objects. 
The first is just the argument of §5.2: the contingency of mathematics follows, for the indispensabilist,
from the contingency of the physical world and the theories we use to describe that world. 
“[M]athematical propositions are known a posteriori, because the existence of mathematical objects can
be established only by empirical methods - by their indispensable role in our best scientific theories.”
(Colyvan 2001: 116).

Colyvan’s second argument is via Field’s embracing of contingent nominalism.  According to
Field, mathematical objects are fictions, but contingently so.  Field’s argument that mathematical objects
only contingently fail to exist is an artefact of his account of the applicability of mathematics.  Briefly: In
order to explain the utility of mathematics, despite its dispensability, Field develops a position he calls
conservativeness: good mathematics is conservative insofar as it does not allow us to derive further
nominalistically-acceptable consequences when added to a nominalist theory.  Conservativeness entails
consistency; if mathematics were inconsistent then adding it to a consistent nominalist theory would
allow the derivation of every theorem of the language (including many nominalistic statements not
already derivable).  So Field needs an nominalistically-acceptable account of consistency, which he
provides in terms of a modal operator understood as representing logical possibility.  It follows from the
use of this modal operator that mathematical theories are (logically) possibly true, but actually false, and
so only contingently false.

Colyvan defends Field’s embrace of contingency, but not for any reason intrinsic to mathematics
or to the indispensability argument.  Field’s view is that mathematical objects are logically possible, but
the contingency of mathematical objects which arises from the indispensability argument is of a different
sort.  For the indispensabilist, mathematical objects are contingent on the nature of the physical world,
not merely logically contingent.

This discrepancy aside, Field’s defense of contingency is not without its critics.  Hale and Wright
criticize Field’s claims, focusing on the oddity that mathematical objects do not seem to be contingent on
any other facts.  Field agrees that there is no good explanation of on what the existence of mathematical
objects depends, but alleges that there is no reason to believe that such an explanation is required;
Colyvan concurs.

Thus nothing in Colyvan’s defense of contingency serves to motivate a view on which it is
intuitively acceptable to call mathematical objects contingent.  It is very well for an indispensabilist to
embrace the contingency of mathematical objects.  Indeed, I believe that it follows from the
indispensability argument.  But if one is going to argue that contingency is an acceptable result, it would
be useful to have an intuitively pleasing account of their contingency.

Balaguer’s plenitudinous platonist, a kind of autonomy platonist, embraces the contingent
existence of mathematical objects too, though not from an indispensabilist’s position.  For Balaguer’s
FBP-ist, mathematical claims are necessarily true in worlds in which abstract objects exist.  But Balaguer
believes that it is possible for there to be worlds in which there are no abstract objects. 

The difference between the claim that true mathematical sentences are true in every world (i.e.
that mathematical truths are necessary truths) and the claim that they are only true in worlds in which
mathematical objects exist (Balaguer’s contingency claim) may seem minor.  Still, I do not know how to
understand the claim that it is possible to have a world without, for example, an empty set.   In any world
in which there are objects, or even if there are just fields with various strengths, there are concepts of
those objects or fields, or at least possible concepts of them.  But once there are even possible concepts,
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we can reason a priori about them.  Such reasoning leads to beliefs about mathematical objects.60  We do
not even have to be in the world in order to impute the concepts and thus the mathematical objects to the
world.

Many worlds have some things in them, so many worlds have mathematical objects.  But the
empty world does not have any thing in it and so we might think that there are no mathematical objects in
that world.  But any account of mathematics will appeal to immanent virtues of theories like simplicity
and uniformity.  It would be awkward gerrymandering to posit that all worlds have mathematical objects
except the empty world (or empty worlds).  So, on the basis of simplicity and uniformity, we might
believe that there are mathematical objects in empty worlds too.

The contingent existence of mathematical objects which arises as a consequence of the
indispensability argument is different from the accounts defended by Field, Colyvan, and Balaguer.  For
the indispensabilist, mathematical objects exist contingently because we only posit them to account for
the physical world.  If the world were to change so that such posits were no longer essential, then we
would no longer have reasons to believe in their existence.  In contrast, the autonomy platonist can, I
believe, account for the necessary existence of mathematical objects if that turns out to be a desirable
characteristic.  In any case, the autonomy platonist is not constrained to say that mathematical objects
exist contingently which I take to be an unfortunate consequence.

§6: The Way Forward
I have not presented positive arguments that the Unfortunate Consequences are truly unfortunate,

i.e. a direct defense of traditional platonism.  It seems to me that the burden is on those who deny the
traditional characteristics of platonism to provide not just a reluctant acceptance of the Unfortunate
characteristics, but positive reasons to embrace those characteristics.  I have not seen such arguments.

But philosophy shouldn’t be burden-of-proof volleyball.  Some people believe that the
advantages of the indispensability argument, its empiricist epistemology for a platonist ontology,
outweigh the Unfortunate Consequences.  My suspicion is that those philosophers who embrace the
unfortunate consequences do so for the epistemological benefits they see in avoiding the posits of
traditional platonism.  Those benefits have been overrated.  I have mentioned some of the reasons for my
belief in Chapter One and I will return to the topic in Chapter Nine.  My goal in this chapter was merely
to make sure that autonomy platonism remains in play and that, when evaluating competing philosophies
of mathematics, all the consequences of each position are considered.

The strongest version of the indispensability argument, QI, depends on controversial claims
about believing in a single best theory, finding our commitments by using a canonical first-order logic,
and the ineliminability of mathematics from scientific theories.  Other versions of the argument attempt
to avoid some of these controversial claims.  In the next two chapters, I will examine some recent
attempts to develop alternatives to QI.

60 I’ll have more on this argument in §9.3.



Chapter Six: The Putnamian Indispensability Argument

I have called the version of the indispensability argument on which we have focused so far, QI, a
Quinean argument.  While Quine never formulated this argument precisely, I believe both that it
represents his views and that it is the strongest version of the argument available.

Still, partially as a result of the argument’s earliest defenders never formulating canonical
versions of the argument, many alternative versions of the argument have been developed.  Some of
these, like the versions by Colyvan and Resnik which we saw briefly in §5.4, are variations on QI.  It’s
best to think of such arguments as Quinean, differing from QI mainly in emphasis rather than in content.

In this chapter, I will examine versions of the indispensability argument which I trace to the work
of Hilary Putnam and which I will call, instead, Putnamian arguments.  My differentiation between the
Quinean argument and the Putnamian arguments is not standard, because there is no standardly accepted
distinction.  But I believe that my division usefully and accurately tracks the central differences in the
intentions of Quine and (at least one thread of work by) Putnam.  I will support that claim with a bit of
exegesis in §1-§2 and show how my division is more useful than another interpreter, Joseph Melia, in §3.

Nothing really hangs on the names of the arguments.  The important distinction is really between
arguments which fully rely on holism and Quine’s criterion for ontological commitment and those which
either leave those commitments implicit or deny them.  The central theme of this chapter is that, in
contrast to the hopes of their proponents, attempts to avoid criticisms of QI by removing such premises
weakens the argument.

§1: Putnam and the Quinean Argument
Putnam is both lauded and criticized for exploring a variety of competing views, especially in the

philosophy of mathematics: deductivism (1967a), modalism (1967b, 1975a), realism (1971 and 1975a
again), and anti-realism (1980, 1981, 1994).  Despite the differences among these views, a reliance on
mathematical empiricism in the guise of one or another form of the indispensability argument is a deep
underlying theme through his work.  

There is a quick way to see this unifying thread.  Repeatedly through his work, Putnam argues
that the theory of relativity shows that Euclidean geometry is false.  This inference links the truth of
mathematical claims with empirical evidence, a link at the core of the indispensability argument.  An
autonomy platonist would not make that inference; that physical geometry is curved only shows the
autonomy platonist that flat geometry is inapplicable to our best theories of space-time.  A fictionalist
would not make that inference either; fictionalists argue that mathematical theories are false without
appealing to such considerations.  Only someone who believes that our justifications for mathematics are
essentially empirical can make such a claim.  That sort of mathematical empiricism, pairing a purportedly
platonist ontology with an empiricist epistemology, is the core of the indispensability argument.  No
matter which of the four specific views Putnam is exploring, he consistently takes this telltale position
regarding Euclidean geometry as a datum.61 

Our focus here is on Putnam’s indispensability argument for what he calls mathematical realism. 
That Putnam relies on indispensability for his mathematical realism needs little defense.  “Today it is not
just the axiom of choice but the whole edifice of modern set theory whose entrenchment rests on great
success in mathematical application - in other words, on ‘necessity for science’” (Putnam 1975a: 67).

In places, Putnam seems to make additional claims for a traditional, autonomy realism.  “There
are two supports for realism in the philosophy of mathematics: mathematical experience and physical
experience.” (Putnam 1975a: 73)  He describes mathematical experience on analogy with theological

61 For examples of how indispensabilism encroaches on Putnam’s four different views of
mathematics, see Putnam 1967b: 50; Putnam 1968: 177; Putnam 1974: ix; Putnam 1975a: 77-8; Putnam
1976: 94; and Putnam 1981: 83.
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experience, independent of empirical evidence.  In later work, Putnam even urges two modifications of
Quine’s indispensability argument which seem incompatible with indispensability: the addition of
combinatorial facts to sensations as desiderata of theoretical construction and agreement with
mathematical intuitions.62  

These early allusions to mathematical experience and later modifications of the argument,
though, are thin and do not alter Putnam’s essentially indispensabilist framework.  Putnam takes
intuitions to be justified empirically, or quasi-empirically, and so not autonomously from scientific
theory.  Further, he does not abandon his criticisms of an intuition-based autonomy platonism: “[T]here
is the extreme Platonist position, which posits non-natural mental powers of directly ‘grasping’ forms (it
is characteristic of this position that ‘understanding’ or ‘grasping’ is itself an irreducible and
unexplicated notion)...” (Putnam 1980: 1).  

Moreover, Putnam insists on empirical verification of mathematical claims.  “[T]he consistency
and fertility of classical mathematics is evidence that it - or most of it - is true under some
interpretation....The interpretation under which mathematics is true has to square with the application of
mathematics outside of mathematics. (Putnam 1975a: 73-4)

Given Putnam’s consistent rejection of pure mathematical intuition and his insistence that
mathematical theories be supported by their applications in empirical sciences, it would be a mistake to
read his attempts to accommodate pure mathematical phenomena or experience as a rejection of the
indispensability argument.  It’s best, I think, to see them as attempts to assimilate aspects of traditional
mathematical epistemology into the context of the indispensability argument.

So let’s turn to Putnam’s explicit and precedental defenses of the indispensability argument. 
Putnam held at least two specific versions of the indispensability argument.  The first is the Quinean
argument, which Putnam echoes both in its procedure for determining the commitments of theories and
its holism.  “I should like to stress the monolithic character of our conceptual system, the idea of our
conceptual system as a massive alliance of beliefs which face the tribunal of experience collectively and
not independently, the idea that ‘when trouble strikes’ revisions can, with a very few exceptions, come
anywhere.” (Putnam 1962: 40)

Putnam’s agreement with Quine on the illegitimacy of instrumentalist double-talk, especially as a
response to Carnapian weaseling, is well-known.  “This type of argument stems, of course, from Quine,
who has for years stressed both the indispensability of quantification over mathematical entities and the
intellectual dishonesty of denying the existence of what one daily presupposes.” (Putnam 1971: 347)

Furthermore like Quine, Putnam embraces a division in our mathematical beliefs between those
claims which we should believe because they are used in scientific theories and those which are
speculative and about which we should remain agnostic.  Quine calls the process of development of
speculative mathematical claims recreation.  Putnam concurs with Quine’s distinction.  

Sets of a very high type or very high cardinality (higher than the continuum, for example), should
today be investigated in an ‘if-then’ spirit.  One day they may be as indispensable to the very
statement of physical laws as, say, rational numbers are today; then doubt of their ‘existence’
will be as futile as extreme nominalism now is.  But for the present we should regard them as
what they are - speculative and daring extensions of the basic mathematical apparatus. (Putnam
1971: 347)

Putnam also developed a second, different indispensability argument, the success argument. 
Both versions of the argument contain the essential characteristics, EC1-EC4: Evidentiary Naturalism;

62 See Putnam 1994: 504-506.
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Theory Construction; Mathematization; and Subordination of Practice.  But the success argument
attempts to simplify the indispensability argument by eschewing appeals to holism and to find an analogy
between arguments for scientific realism and arguments for mathematical realism.

Other differences between Quine and Putnam over the indispensability argument emerged over
time.  Putnam abandoned Quine’s commitment to a single, regimented, best theory and assumed a realist
stance about truth in science, in contrast to Quine’s view of truth as mainly a device for semantic ascent. 
Also unlike Quine, Putnam argued that realism in mathematics can be justified by its indispensability for
correspondence notions of truth (which require set-theoretic relations) and for formal logic, especially for
metalogical notions like derivability and validity which are ordinarily treated set-theoretically.  Quine
mainly focused on the needs of physical science.  These differences may be more cosmetic than
contentful and mainly concern the goal of theory construction: what mathematics is supposed to be
indispensable for.  We can, for the most part, put them aside and focus on the most influential of
Putnam’s modifications, his attempt to remove the argument’s reliance on holism.

§2: Putnam’s Success Argument
In this section, I develop the argument which I call Putnamian and show that it is, for the most

part, a limited and weak appeal to the practical utility of mathematics.  It might also be a demand for an
account of the applicability of mathematics in empirical science.  But it does not justify our mathematical
beliefs.  In later sections of this chapter, I show how the success argument has been precedental for many
recent indispensability arguments and how it shares its weaknesses with them.

Putnam’s argument focuses merely on the success of mathematics in developing science.  “[T]he
hypothesis that classical mathematics is largely true accounts for the success of the physical applications
of classical mathematics (given that the empirical premisses are largely approximately true and that the
rules of logic preserve truth)” (Putnam 1975a: 75).

Putnam’s success argument for mathematics is analogous to, and may be compared with, his
success argument for scientific realism.  The scientific success argument, SS, relies on Putnam’s famous
claim, sometimes called the no-miracles argument, that positions other than realism are implausible. 
“The positive argument for realism is that it is the only philosophy that doesn’t make the success of
science a miracle” (Putnam 1975a: 73).  

SS SS1. Scientific theory is successful.
SS2. There must be a reason for the success of science.
SS3. No positions other than realism in science provide a reason.
SSC. So, realism in science must be correct.

Given the relatively uncontroversial SS1 and SS2, Putnam’s argument for realism in science rests
on the no-miracles argument at SS3.  But strictly false theories such as Newtonian mechanics can be
extremely useful and successful.  If realism were the only interpretation which accounted for the success
of science, then the utility of many false scientific theories would be left unexplained.  An instrumentalist
interpretation on which theories may be useful without being true better accounts for the utility of false
theories.63

There are probably good responses to this quick criticism of SS3.  But the realism/anti-realism
debate in science is ancillary to our purposes here.  I mention SS mainly to distinguish the no-miracles
argument for scientific realism from Putnam’s secondary use of that argument for mathematical realism. 

63 Recent work on the realism/anti-realism debate also claims that acceptance of the no-miracles
argument may be the result of a base-rate fallacy; see Magnus and Callendar 2004 and references therein.
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“I believe that the positive argument for realism has an analogue in the case of mathematical realism. 
Here too, I believe, realism is the only philosophy that doesn’t make the success of the science a miracle”
(Putnam 1975: 73).

Putnam’s non-Quinean indispensability argument has the structure of an inference to the best
explanation, where the explanandum is the utility of mathematics in science.

MS MS1. Mathematics succeeds as the language of science.
MS2. There must be a reason for the success of mathematics as the language of science.
MS3. No positions other than realism in mathematics provide a reason.
MSC. So, realism in mathematics must be correct.

By ‘realism’, Putnam means a philosophy of mathematics on which both mathematical objects
exist and many mathematical sentences are true.  Thus MS provides, at least implicitly, an alternative to
Quine’s indispensability argument.  Where Quine makes ontology the result of modeling our best
theories, MS says that ontology is a consequence of understanding our explanations, our reasons for the
success of mathematics in science.

To see that MS is independent of SS, consider that even if science were interpreted
instrumentally, mathematics may be justified by its applications.  On the standard, Quinean
indispensability argument, our mathematical beliefs are only justified insofar as our scientific beliefs are. 
Some philosophers, like Nancy Cartwright, Bas van Fraassen, and Larry Laudan, have argued that
science, or much of it, is false or idealized.64  Even more recently, Robert Batterman provides convincing
arguments that much of scientific reasoning is asymptotic or idealized.  If our justification for
mathematical realism is based on its use in scientific theory, and anti-realist philosophers are correct
about science, then mathematics requires an auxiliary defense.  But such problems need not infect our
beliefs in the mathematics applied in scientific theory: a tool may work fine even on a broken machine. 
One could deny or remain agnostic towards the claims of science and still attempt to justify our
mathematical beliefs using an argument like MS.  While Putnam may see MS on analogy with SS, they
are independent arguments.

MS1 is inoffensive even to the nominalist who thinks we can dispense with mathematics.  MS2 is
just a demand for an account of the applicability of mathematics to scientific theory.  MS, like SS, rests
on its third premise.

Even if one could establish that premise, and thus the argument, the mathematical realism it
would establish would still suffer the unfortunate consequences: restriction, ontic blur, modal uniformity,
temporality, aposteriority, and methodological subservience.  Putnam’s success argument retains all the
essential characteristics of an indispensability argument and so would be burdened with the unfortunate
consequences.

But the unfortunate consequences are really moot, since MS3 is false.  Putnam’s argument for it
is essentially a rejection of the argument that mathematics could be indispensable, yet not true.  “It is
silly to agree that a reason for believing that p warrants accepting p in all scientific circumstances, and
then to add ‘but even so it is not good enough’” (Putnam 1971: 356).

For the holist, Putnam’s argument, his rejection of double-talk, has some force.  The holist has no
external perspective from which to evaluate the mathematics in scientific theory as instrumental.  Adrift
on Neurath’s ship, s/he can not say, as Carnap or the weasel can, “Well, I use mathematical objects
within my best scientific theory, but I don’t really mean that they exist.”

For MS, which ex hypothesi rejects holism (in order to distinguish it from QI), instrumentalist

64 See Cartwright 1983; van Fraassen 1980; and Laudan 1981.
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interpretations of the mathematics used in scientific theory are far more compelling.  The proponent of
MS is not constrained to limit existence claims to the quantifications of our best theory.  She is free to
adopt an eleatic principle, for example, as the fundamental criterion for existence.65  The eleatic, who
claims that only objects with causal efficacy (or spatio-temporal location) exist, rejects mathematical
objects independently of (and despite) considerations of their applications.

More importantly, any account of the applicability of mathematics to the empirical world other
than the indispensabilist’s refutes MS3.  For example, Mark Balaguer’s plenitudinous platonism says that
mathematics provides a theoretical apparatus which applies to all possible states of the world.  It explains
the applicability of mathematics to the natural world, non-miraculously, since any possible state of the
natural world will be described by some mathematical theory.  Dispensabilist constructions like that of
Field 1980, which shows how mathematical theories can be taken as shorthand for statements about
physical objects (spatio-temporal points and their relations) also erode confidence in MS3 by presenting
an alternative account of why mathematics is useful in science.

In response, the proponent of MS could amend MS3 to MS3*.

MS3* Realism best explains the success of mathematics as the language of science.

The substitution of MS3* for MS3 does not help, though, since realism does not best explain the
application of mathematics.  In fact, it does not even explain applicability.  Realism is just the claim that
some mathematical claims are non-vacuously true.  It says nothing about the applicability of mathematics
to the physical world.  Indeed, the existence of abstract objects of mathematics would seem to have little
to do with the physical world.  To see mathematical realism as explaining the successful application of
mathematics to science would be to take the relationship between mathematical objects and the physical
world, the most puzzling aspect of the question of application, as a brute fact.

So there are two distinct reasons to reject MS.  First, there are other, and better, accounts of the
application of mathematics to physical theory.  Any application which actually explains the connection
between abstract mathematical objects and the physical world will be preferable to Putnam’s, which
takes this relationship as brute.  Second, even if we were to accept the validity of MS, the mathematics
yielded would still suffer the unfortunate consequences.

These reasons, combined, reveal a tension in MS.  The objects knowledge of which is justified
by the indispensability argument are concrete, known a posteriori, and exist contingently and temporally;
those are the unfortunate consequences.  So, the indispensability argument can not establish pure
mathematical knowledge.  But, if it could, the account of why mathematics is useful in science would
clearly be missing since mathematical objects inhabit an abstract realm, apart from the physical world.

Nevertheless, Putnam’s MS has been precedental for, if not explicitly influential on,
philosophers attempting to avoid what they see as a weakness of QI in its reliance on holism.  Since the
newer versions of the Putnamian argument do not differ relevantly from MS, I will not spend much time
on them.  But, it will be useful in tracking the motivations for recent modifications of the indispensability
argument to examine Resnik’s pragmatic indispensability argument as well as a general argument for
why removing holism from the indispensability argument is fruitless.  

First, I digress briefly to discuss a different division of Quinean and Putnamian indispensability
arguments and thus complete the defense of my version of the distinction.

65 For examples of eleatics, see Armstrong 1978b: 46; Armstrong 1978a: 1:126; Azzouni 2004b:
150; Field 1989: 68; and Melia 2000.
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§3: Melia’s Two Indispensability Arguments
Melia also distinguishes a Quinean version of the indispensability argument from a Putnamian

version.

The indispensability argument comes in two main flavours: (1) We ought to believe the claims
our best scientific theories make about the world - after all, they are our best scientific theories. 
But a casual glance through any book of theoretical physics reveals that our best scientific
theories entail the existence of numbers, sets and functions... Since such claims entail the
existence of abstracta, we cannot consistently assert or believe in our scientific theories whilst
denying the existence of abstracta.  (2) We ought to believe in abstracta for the very same
theoretical reasons we believe in the concrete, unobservable entities postulated by scientific
theory.  We postulate such things as quarks and space-time points not because we directly
observe these entities, but for pragmatic or aesthetic reasons: because doing so either increases
the explanatory power of our theory, or increases the theory’s simplicity, or increases the
theory’s strength-or a combination of all three (Melia 2000: 455-6).

Melia ascribes the first version to Putnam and the second to Quine.  Such ascriptions are
consistent with my division of the arguments: it’s reasonable to put Melia’s (1) into Putnam’s mouth and
Melia’s (2) into Quine’s.  But Melia’s distinction fails to get to the root of the difference between the two
arguments.  (1) is consistent with Quine’s views and (2) is consistent with what I’m calling the
Putnamian argument.  Indeed, it is difficult to see Melia’s (1) and (2) as distinct arguments; they look
more like one argument, that we should believe in all our posits equally, with differing emphases.

Melia accurately represents Putnam’s argument as lacking an explicit statement of the method
one is to use to determine the objects to which a theory commits.  But he represents, as a distinctive
characteristic of the Putnamian argument, its reliance on the double-talk argument, its insistence on the
inconsistency of mathematical instrumentalism in light of its ubiquity in our most serious scientific
endeavors.

Putnam does makes use of the double-talk argument.  As we have seen, though, that argument is
also essential to the Quinean argument and really rooted in his work.  One can not use this characteristic
to distinguish Quine’s version from that of Putnam.

For (2), Melia ignores Quine’s premise that we must find our commitments in the first-order
logical regimentations of our best theory.  Melia thus proceeds to criticize a version of the argument
which is not as strong as it can be.  Quine’s appeal to his criterion for determining the ontological
commitments of a theory is essential for blocking exactly the kind of weaseling criticism that Melia uses
against the indispensability argument and which Quine invokes against Carnap’s proto-weaseling.

In characterizing the Quinean argument, Melia focuses on Quine’s claim that the reasons for
believing in mathematical posits are identical to the reasons for believing in any other posits, like quarks. 
This accurately represents Quine’s view about posits.  Melia also correctly presents Quine’s claim that
there are pragmatic and aesthetic reasons for choosing one theory over another.  But Melia takes these
aspects of Quine’s method as evidence of a weakness in the argument.  He claims that the introduction of
considerations like simplicity in choosing a theory leave Quine’s version open to the weasel.  

Melia’s reading of Quine is uncharitable.  Quine’s claims about so-called aesthetic
considerations in theory construction are merely facts about the under-determination of theories by
evidence.  For any body of empirical evidence, there are many possible theories which can account for
that evidence and we have to appeal to considerations like simplicity to choose among the competing
theories.  Quine is not leaving slack in the interpretation of our best theory.  Once we choose a theory, we
are committed to the objects over which that theory first-order quantifies.

The most salient differences between Quine’s argument and Putnam’s argument are, first, that
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Quine provides an explicit method for determining the ontological commitments of a theory, while
Putnam leaves that question open, and, second, that Quine’s version of the argument is ineliminably
steeped in holism while Putnam’s attempts to avoid it.  Quine’s argument is thus resistant to alternative
interpretations of the language of science.  In particular, Quine’s argument resists weaseling.  We can
not, for Quine, take back some of what we allege.  Given Putnam’s argument, for which we do not have
explicit rules for interpretation of scientific discourse, a weaseling strategy might succeed.  The weasel
says that we can deny that we are really committed to the objects over which we first-order quantify. 
That contradicts the version of the indispensability argument that I presented as Quine’s.  But, it need not
contradict the version I ascribe to Putnam.

Getting the difference straight between the Quinean argument and Putnamian argument is
important in answering the question whether there is an opening for the weasel in any version of the
indispensability argument.  A version of the argument which is explicit about finding one’s commitments
in the first-order quantifications of our best theories, on pain of contradiction, resists the weasel.  For
versions which are more casual about our commitments, the weasel has a way in.

Another way to see the difference between the Quinean and Putnamian arguments is to ask
whether looseness arises at the level of theory choice or at the level of commitments.  For the Quinean
argument, the only slack is at the level of theory choice.  QI1, which refers to a best theory, does not fully
describe the diverse complexities of theory choice.  We must balance breadth and elegance and simplicity
and unification and other factors.  For Quine, balancing these factors is part of the scientific project. 
Once we have settled on a best theory, though, we are stuck with whatever objects best model it; there is
no extra-scientific perspective from which to resist its commitments.

For Putnam’s argument, there is slack in both the construction of our theories and in their
modeling.  We have to decide which philosophical theories (realism or its competitors) best explain the
utility of mathematics in science.  But only if there is slack at the level of commitments can the weasel
get a toehold.  Melia argues that we can choose the theory which makes the world simpler.  But that
claim is a non sequitur against the Quinean argument.  The weasel enters the picture at the level of
ontological commitment: we can deny the existence of objects over which we first-order quantify.

Melia seems to miss the key premise of the indispensability argument, that we find our
commitments in the domain of quantification of the first-order version of our best theory.  He correctly
notes that we choose among empirically equivalent theories.  But, once we choose one of those theories,
we can not, according to the Quinean indispensabilist, choose to take back any of what we stated.

Of course, Melia is free to abandon that key premise of QI, as Putnamian arguments do.  In that
case, one has to provide an alternative method of determining one’s ontological commitments.  Putnam
argued that we should believe in the objects which best explain the success of science; that method fails
to establish mathematical realism.  Melia can choose an eleatic principle.  But such a choice is not an
argument against QI.  It is the result of an antecedent rejection of Quine’s method for determining the
commitments of a theory.

Quine knew that in choosing alternative criteria for determining one’s commitments, the choice
of one’s logic is of utmost importance.  Once we give up first-order logic havoc reigns.  If we adopt a
second-order logic, we are already committed to sets or properties.  By adopting other logics, our
commitments can be obscured.  Or, we can abandon all hope of finding our commitments in regimented
theories, and find ourselves back at the point before Quine wrote “On What There Is,” fussing with
names in ordinary language or letting bare metaphysical prejudices lead the way.

In evaluating indispensability arguments, only their content is important.  It does not matter
whether one version or another is best attributed to Quine or to Putnam.  Whether my exegesis better
tracks the intentions of Quine and Putnam better than Melia’s is moot.  Moreover, Melia’s claim that our
uses of mathematics in scientific theory do not commit us to belief in the existence of mathematical
objects may be a more or less reasonable response to different versions of the argument.  The way I
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understand the differences between the Quinean and the Putnamian argument, weaseling is more
successful against the latter.  Both Quine and Putnam defend their arguments from such an objection by
appealing to the double-talk argument.  But Quine supports his appeal to the double-talk argument by
both his arguments for holism and appeals to his criterion for determining the ontological commitments
of theories.  Putnam, attempting to avoid Quine’s full holism and views on best theories, weakens these
requirements and thus opens his version of the argument to instrumentalist weaseling.

§4: Resnik’s Pragmatic Argument
Michael Resnik, like Putnam, presents both a holistic indispensability argument, like Quine’s,

and a non-holistic argument.  He calls the latter the pragmatic indispensability argument.

RP RP1. In stating its laws and conducting its derivations, science assumes the existence of
many mathematical objects and the truth of much mathematics.

RP2. These assumptions are indispensable to the pursuit of science; moreover, many of
the important conclusions drawn from and within science could not be drawn
without taking mathematical claims to be true.

RP3. So we are justified in drawing conclusions from and within science only if we are
justified in taking the mathematics used in science to be true. 

RP4. We are justified in using science to explain and predict.
RP5. The only way we know of using science thus involves drawing conclusions from

and within it.
RPC. So, by RP3, we are justified in taking mathematics to be true (Resnik 1997: 46-8).

The potential benefits of RP are twofold.  First, RP, like MS, may avoid the problems which
arise from undermining our beliefs in the truth of science.  Even if our best scientific theories are false,
their practical utility may still justify our using them.  RP alleges that we need to presume the truth of
mathematics even if science is merely useful.  Second, and more explicitly, Resnik presents RP as a
response to criticisms of the indispensability argument, especially criticisms of its underlying holism, by
Maddy and Sober, arguments which we saw in Chapter 3.

The key premises for RP are the first two.  If we can take mathematics, like science, to be merely
useful, then those premises are unjustified.  The question for the proponent of RP, then, is whether
science presumes the truth of mathematical claims and the existence of mathematical objects.  How does
the proponent of RP determine the commitments of scientific theory?

This question is important because the mere inclusion of mathematical axioms within a scientific
theory does not entail that those who use the scientific theory are assuming, say, the truth of the
existential quantifications within that theory.  The utility of mathematics is not by itself an argument for
its truth.  We need, further, a reason to believe that the inclusion of mathematical axioms within a
scientific theory is serious enough to support beliefs in the objects to which those axioms refer. 
Otherwise, we are free to take the mathematics as merely instrumental, for representation and modeling,
but not as an aspect of our most sincere, austere ontology.  The inference to the truth of mathematics in
RP1 is unjustified in the absence of a clear explanation of how science assumes the existence of objects.

The same problem appears in RP2.  The scientist may work without considering the question of
mathematical truth at all: without employing a truth predicate applicable to mathematical statements, and
without taking mathematical theorems to be true.  The proponent of RP can respond that the scientist's
beliefs are irrelevant, and that his work entails those commitments anyway.  But then, again, we need a
reason to believe that the uses of mathematics are supposed to be serious, entailing justifications of our
beliefs in those axioms.

Against both Putnam and Resnik, the weasel, unchained by the abandonment of holism, attacks
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the strong premise that science presupposes or requires either the truth of mathematical claims or the
existence of mathematical objects.  A pragmatic argument for the indispensability of mathematics is no
indispensability at all.  All scientists need, whether we interpret their work as true or merely
instrumentally useful, is the practical utility of mathematics.  They need not presuppose the truth of
mathematical claims or the existence of mathematical objects.

The instrumentalist argument against RP is the same as that against MS.  This result holds
generally.  For indispensability arguments which give up Quinean holism, instrumentalist interpretations
of the mathematics used in scientific theory are compelling.  Without holism and Quine’s criterion for
determining the ontological commitments of a theory, our existence claims need not be restricted to the
quantifications of our best theory.  We are free to adopt an eleatic principle, for example, as the
fundamental criterion for existence.

Putnam and Resnik tried to save the indispensability argument from problems arising from
holism, but they open the argument to weaseling criticisms to which Quine’s original argument was
resistant.  QI resists the weasel because of Quine’s claims that the ontological chips are down precisely in
our single best theory and that we find our commitments in the quantifications of that holistic theory. 
Chris Pincock has noticed this role of holism in the argument.  “Holism...is useful because it blocks any
attempt to allot confirmational support to the various parts of our best scientific theories in different
ways” (Pincock 2004a: 62).

Still, there may be other benefits of considering RP.  Resnik presents the argument in part as a
response to the compelling questions about why mathematics is useful in science.  “[The pragmatic
argument] has the fairly limited aim of defending mathematical realism by pointing out that any
philosophy of mathematics that does not recognize the truth of classical mathematics must then face the
apparently very difficult problem of explaining how mathematics, on their view of it, can be used in
science” (Resnik 1997: 47).

As we have seen, the mere assumption of mathematical realism does not explain the applicability
of mathematics and there are alternative, satisfying explanations available.  For the mathematical
nominalist, Field 1980 explains that mathematics is useful because it is a convenient shorthand for more
complicated statements about physical quantities.  For the non-indispensabilist realist, Balaguer’s FBP
notes that for all physical situations there is a mathematical theory which applies to it.  If the goal of the
pragmatic argument were merely to show that there is a problem of application, it can be solved without
justifying mathematical beliefs on the basis of their utility to science.

Colyvan defends Resnik’s invocation of a non-holistic argument, despite skepticism about
whether a non-holistic version is strong enough to do the work that the indispensabilist needs.

This argument has some rather attractive features.  For instance, since it doesn’t rely on
confirmational holism, it doesn’t require confirmation of any scientific theories in order for
belief in mathematical objects to be justified. Indeed, even if all scientific theories were
disconfirmed, we would (presumably) still need mathematics to do science, and since doing
science is justified we would be justified in believing in mathematical objects. This is clearly a
very powerful argument and one with which I have considerable sympathy (Colyvan 2001: 15).

But it is implausible that our mathematical beliefs would be justified by their appearances in
scientific theories without some way of transferring evidence from science to mathematics.  Holism
facilitates that transfer.  Colyvan sees the virtue of RP as showing that we need not think of evidence as
transferring from individual sentences of a scientific theory to other individual sentences. Instead,
evidence is supposed to transfer from the practice of science to our mathematical beliefs.  Resnik and
Colyvan claim that scientific practice is justified, whatever the truth values of its theories, so even if all
scientific theories were disconfirmed, our uses of mathematics in scientific practice would still justify
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our mathematical beliefs.
Setting aside worries about the validity of RP (or MS, which has a similar goal), I do not believe

that the argument is plausible.  Resnik wants us to believe that the uses of mathematics in science should
justify our mathematical beliefs, even if scientific theory were false.  But there must be some kind of
epistemic virtue transferring from science to mathematics if our mathematical beliefs are going to be
justified by their applications.  If scientific practice were no more justifiable an intellectual pursuit than,
say, playing Call of Duty, and mathematics were needed only in order to play the game (a core claim for
the indispensabilist), we would see mathematics as a merely instrumental practice for a merely
instrumental pursuit.  It is only because we are so thoroughly convinced that our scientific practice is
justifiable (even if the laws are not precisely true) that the indispensabilist can suppose that we do not
need a premise like holism to transfer justification.  If the indispensability argument were the only reason
to believe mathematical claims and the practice of science had the value of, say, astrology, we would
have no reason to believe them.

§5: Indispensability Without Holism
Both MS and RP attempt to give the proponent of the indispensability argument some freedom to

avoid two important objections to the standard indispensability argument, from anti-realists about science
and from anti-holists.  But the flexibility gained by eschewing QI’s invocation of holism comes at a cost
to the effectiveness of the argument.

While Putnam and Resnik attempt to avoid a contentious holism, any indispensability argument
has to give holism or something like it some role.  The indispensabilist claims that evidence for our
scientific theory extends to the mathematical elements of that theory.  Without holism, or something else
to do the work that holism does for QI, it is difficult to make the case that evidence transfers from science
to mathematics.  

Mathematical objects are causally inert.  They have no spatio-temporal location and no effects on
anything that does.  They are, in Hartry Field's words, absolutely insular, both brute and barren.66  The
evidence we have for our scientific theories is essentially sensory.  We have theories of physical objects
insofar as we have sense experiences of physical objects.  Our theories extend to distant and small
objects of which we have no (direct) sense experience.  But we have explanations of our distance which
do not entail that, say, quarks and dark matter are insular.  Indeed, we posit such objects in order to
explain their constitutive or causal relations with the objects we do experience.

Whatever mathematics we use in our scientific theories, it is difficult to see how our evidence
can extend to absolutely insular mathematical objects.  Pace the odd Pythagorean, trees are not made of
numbers or sets.  Numbers and sets are not causally efficacious, even in deep space.  It seems
overwhelmingly more likely that the mathematics is a second-class artefact of our formulations of those
theories.

Moreover, it is not typical practice to think of empirical evidence as extending to mathematical
claims, except in one trivial sense.  Scientists seeking a mathematical framework for a physical theory, a
proper set of differential equations, say, will ordinarily test and discard many mathematical hypotheses. 
They struggle to find the correct constant (e.g. the fine-structure constant) for an equation or formula. 
We do not ordinarily understand their rejected hypotheses as evidence against any mathematical theory. 
Conversely, the adoption of a mathematical theory by scientists is not naturally seen as providing
mathematical evidence for that theory, except insofar as (this is the trivial case) mathematicians might

66 “Let us call a claim brute if its obtaining or not obtaining doesn’t depend on anything else;
barren if no phenomena from a different domain depend on it; and absolutely insular if it is both brute
and barren: (Field 1993: 296).
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seek a model for a theory and the physical world can be a model, given appropriate bridge principles. 
The results of experiment and observation and theory construction seem irrelevant to our mathematical
beliefs.

But not if we are, like the proponent of the Quinean argument, holists.  Once holism is invoked,
it is no longer puzzling how empirical evidence can extend to mathematical claims: all evidence for any
portion of our theory is evidence for every portion of our theory.  Our evidence for our scientific theories
extends to their mathematical theorems and objects.  Unless one introduces holism into the argument,
either implicitly or explicitly, empirical evidence does not transfer to mathematical claims.  Holism
bridges the disciplines.

It is understandable that the proponent of the indispensability argument might want to eschew
holism.  But the holism in question is not particularly problematic.  As a logical matter, it is undeniable:
in response to recalcitrant experience, any statement of a theory may be held true as long as the truth
values of others are adjusted to compensate.  Sober’s argument against holism, that we hold some
premises in the background whenever we perform an experiment or an observation, may be practically
accurate.  We don’t bring all of our background beliefs to play in any given observation.  Such a practice
can be observed without holism being false.  If holism is correct within science, the indispensabilist still
has a case to make for the extension of evidence from science to mathematics.

§6: Other Non-Holistic Indispensability Arguments
In recent years, a variety of philosophers have developed versions of the indispensability

argument which do not explicitly rely on holism.  As we will see in the next chapter, Alan Baker
introduces his recently influential explanatory (or enhanced) indispensability argument in part as an
attempt to develop a version of the argument that does not rely on holism.67  Patrick Dieveney argues that
the argument is better without holism.  “[T]here is a stronger version of the argument...that does not
include confirmational holism as a premise” (Dieveney 2007: 126).

Similarly, David Liggins presents two arguments which he claims eschew appeals to
confirmation holism, one focusing on measurement and the other on law statements.68  Jacob Busch and
Andrea Sereni propose what they call a minimal indispensability argument, similar to those of Liggins,
which does not invoke holism.69

None of these so-called non-holistic versions of the indispensability argument, these Putnamian
arguments, avoid the problems we saw facing Putnam’s MS or Resnik’s RP.  Without holism, the transfer
of evidence from the scientific portions of a theory to its mathematical axioms is unmotivated.  On a non-
holistic (or atomistic) view, mathematics is a discipline independent of empirical science.  Our evidence
for mathematics is independent from our evidence for empirical theories, as independent and dissimilar
as we can imagine.  The indispensability argument seems to require holism or some other argument to the
same end, either implicitly or explicitly.70

In formulating indispensability arguments, proponents may reasonably hope to weaken the
controversial premises of the argument so as to make it maximally defensible.  Quine’s reliance on
naturalism, holism, and his criterion for determining the commitments of a theory are all controversial.  It

67 See Baker 2005 and Baker 2009.

68 See Liggins 2008.

69 See Busch and Sereni 2012.

70 See Marcus in preparation.
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makes perfect sense for proponents of the argument to avoid or downplay the argument’s essential
reliance on these premises.  But weakening the argument to make it more defensible only makes it more
vulnerable to attack.  Avoiding explicit commitments to the controversial premises to make it more
resistant to one sort of attack makes it more liable to other kinds.  In particular, an indispensability
argument which rejects the legitimacy of double-talk is resistant to weaseling.  QI, in its explicit defense
of the relevant controversial premises, including the commitment to Quine’s criterion for determining the
commitments of a theory, is maximally strong. 

There is more than a hint of truth in these Putnam-inspired attempts to justify our mathematical
beliefs independently of our beliefs about science.  But insofar as one wishes to justify mathematical
beliefs without appealing to their uses in science, one does not invoke an indispensability argument; one
is looking for autonomous justifications, toward autonomy platonism.

We have almost reached my discussion of autonomy platonism.  First, there is one more version
of the indispensability argument to examine, one which has received a lot of attention recently: the
explanatory (or enhanced) indispensability argument.



Chapter Seven: The Explanatory Indispensability Argument 

§1: Indispensability, Theories, and Explanations
One of the consequences of Quine and Putnam not formulating a canonical version of the

indispensability argument is the contemporary proliferation of versions of the argument.  Another
consequence is that scholarship on the argument did not develop in earnest until Hartry Field’s seminal
Science without Numbers appeared in 1980.  In that book, Field denies QI4, the claim that our best
theories first-order quantify over mathematical objects.  To support his denial, he shows how to
reformulate Newtonian gravitational theory (NGT) without using standard mathematical axioms.  Field
demonstrates that the physical structure of space-time with certain assumptions about continuity can be
used in lieu of real mathematics in relatively attractive formal versions of NGT.

Field’s project was precedental for a range of further research.  John Burgess worked on refining
and improving Field’s project, using two-sorted logics to streamline the construction.  Charles Chihara
and Geoffrey Hellman rewrote mathematical theories as modal ones.  Mark Balaguer attempted to show
how quantum mechanics could be nominalized.  Much has been written about these projects, all
surrounding the claim QI4.  We can call these projects, generally, dispensabilist.  

I will not attempt to answer to the deeply interesting questions of whether dispensabilist projects
are technically successful.  My focus is on the other premises of the argument.  But we should keep in
mind that even for those who accept that first-order quantification over mathematical objects in an
attractive theory is sufficient to justify mathematical beliefs, the further question of whether our best
theories actually do quantify over mathematical objects is an open one.

One assumption of Field’s project, central to QI as well, is that we should believe in all and only
the posits of our best scientific theories.  We have seen that some versions of the indispensability
argument are more liable than others to rejections of that claim via weaseling, to denying that we should
believe in the existence of all of the objects to which our theories refer.  In particular, versions of the
argument which give up on Quine’s holism lose the ability to respond to the weasel by appealing to the
ways in which evidence for a theory spreads to all its components.

Still, proponents of weaseling may see even the standard indispensability argument, with its
emphasis on uses of mathematics to represent physical quantities, as vulnerable.  Some such opponents
of the indispensability argument claim that the representational role of mathematics in science is
insufficient to justify our mathematical beliefs.  “We are not committed to belief in the existence of
objects posited by our scientific theories if their role in those theories is merely to represent
configurations of physical objects.  Fictional objects can represent just as well as real objects can” (Leng
2005: 179).71

Thus, some recent work on the indispensability argument, by Alan Baker and Mark Colyvan
especially, has sought either to replace or augment the central assumption of standard indispensability
arguments, like QI or CIA, that our commitments are to be found in canonical versions of our theories. 
Instead of considering how mathematics is used in scientific theories, they suggest, we should look at
how mathematics functions in scientific explanations.  Proponents of the explanatory indispensability
argument believe that uses of mathematics in scientific explanations are not as easily explained away as
the merely representational uses of mathematics in scientific theories: nominalism is less plausible if one
can show that mathematics plays an explanatory role in addition to its representational role. 

My central goal for this chapter is to show that either the explanatory argument succumbs to
instrumentalist weaseling, like the versions of the indispensability argument discussed in Chapter Six, or
it is no stronger than the standard argument, QI.  Along the way, we’ll look at the origins of the

71 See also Balaguer 1998; Pincock 2004b; and Daly and Langford 2009.  The latter call this
claim the indexing argument: we are not committed to mathematical objects if we use them in a merely
representational (or indexing) role.
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explanatory argument and the ways in which evidence is supposed, by its proponents, to support the
argument.

As we proceed, it is important to remember that explanation already has a central role in the
standard indispensability argument as a prominent factor in our choices of theories.  Among the criteria
we use to compare theories are their abilities to explain empirical phenomena.  Other factors include the
simplicity of the theory, the breadth of its application, and the ways in which it can unify disparate
phenomena.  Proponents of the new indispensability argument urge that explanation should play an even
more prominent role.

§2: The Explanatory Indispensability Argument
Paolo Mancosu presents a tidy version of the explanatory argument, which is sometimes called

the enhanced indispensability argument.

EI EI1. There are genuinely mathematical explanations of empirical phenomena
EI2. We ought to be committed to the theoretical posits postulated by such explanations;

thus,
EIC. We ought to be committed to the entities postulated by the mathematics in question

(Mancosu 2011: §3.2.)72

In addition to using EI as a response to instrumentalist concerns about the representational role of
mathematics in scientific theories, proponents of EI are motivated by dispensabilist criticisms of the
standard argument, like those of Field.  The proponent of EI sets aside the question of whether scientific
theories can be rewritten without mathematical theorems.  Instead, she argues that non-mathematical
explanations of physical phenomena are either unavailable or less preferable. 

The literature on the explanatory argument is divided between two ways to view EI in relation to
versions of the argument, like QI, which appeal to theories.  Bangu and Melia see EI as an additional
demand on the platonist, and thus an additional option for the nominalist.  They argue that even if
dispensabilist constructions like those of Field are not available, we should withhold commitments to
mathematical objects since there are no genuinely mathematical explanations.73  On the Bangu/Melia
view, the platonist may have to show mathematics indispensable from both theories and explanations; the
nominalist may need only to show that mathematics is eliminable from explanations or theories.

In contrast, one can see the argument as an additional option for the platonist, and thus an
additional demand on the dispensabilist.  Baker and Lyon and Colyvan argue that even if dispensabilist
constructions of scientific theories are available, we should believe in mathematical objects as long as
there are genuinely mathematical explanations of the physical phenomena entailed by those theories.  For
example, exploring David Malament’s claim that phase-space theories resist dispensabilist constructions,
Lyon and Colyvan write, “Even if nominalisation via [a dispensabilist construction] is possible, the
resulting theory is likely to be less explanatory; there is explanatory power in phase-space formulations
of theories, and this explanatory power does not seem recoverable in alternative formulations” (Lyon and
Colyvan 2007: 242).  On the Baker/Lyon and Colyvan view, the platonist must show that mathematics is
indispensable only from explanations (or, perhaps, only from theories); the nominalist must show how
we can eliminate mathematics from both theories and explanations.

72 Compare to Baker 2009: 613.

73 See Melia 1998: 70; Bangu 2008: 14; and Bangu 2013: 259.  Melia 2002 and Leng 2005: 179,
though working with explanation as a theoretical virtue, can also be seen as taking this route.
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Since, I will argue, the explanatory argument is at best an elliptical allusion to the standard
argument, it will not matter here whether EI is taken as an additional burden on the nominalist or as extra
work for the platonist.

§3: The Origins of the Explanatory Argument
Before analyzing the explanatory argument, I want to clear up a matter of some dispute about its

origins.  This confusion contributes to a continuing misunderstanding about the relation between the
standard argument and the explanatory argument.

Baker and Mancosu both misleadingly credit Field as originating the explanatory argument. 
“Hartry Field, one of the more influential recent nominalists, writes that the key issue in the
platonism-nominalism debate is ‘one special kind of indispensability argument: one involving
indispensability for explanations’ (Field 1989, p. 14)” (Baker 2005: 225).

Field does allude to a special indispensability argument for explanations in the text cited.  But
what makes the argument special, for Field, is not its difference from the standard argument, QI.  Field
contrasts the special indispensability argument for explanations in science with an indispensability
argument which alleges that mathematics is required for logic, specifically metalogic.  Putnam had
argued, in his influential “Philosophy of Logic,” that we should believe in mathematical objects because
of their utility both in science and in logic.

[A]t present reference to ‘classes’, or something equally ‘non-physical’ is indispensable to the
science of logic.  The notion of logical ‘validity’, on which the whole science rests, cannot be
satisfactorily explained in purely nominalistic terms, at least today (Putnam 1971: 333).

Field thus augmented his reformulation of NGT with demonstrations how to understand concepts
like consistency, derivability, and truth without appealing to abstract objects like sets or argument
types.74  When Field mentions the special indispensability argument for explanations, he is not
contrasting the explanatory argument with one for scientific theories.  Field is distinguishing the
argument that we need mathematics for science from the argument that we need mathematics for
metalogical notions like consistency and truth.

Bangu follows Baker and Mancosu on this misdirection.  “Field noted that even if, contrary to
what he argued in his (1980), mathematical posits turn out to be indispensable to scientific theorizing,
they still can’t be granted ontological rights until they are shown to be indispensable in a stronger, more
specific sense; in particular, the realists should be able to show that mathematical posits are
indispensable for scientific explanations (Field, 1989, pp. 14-20)” (Bangu 2008: 13-4).  

A careful reading of the selection cited by both Baker and Bangu shows no such argument by
Field.  Field makes no claim that there is a heavier burden on the dispensabilist than recasting standard
scientific theories to remove quantification over mathematical entities.  Field’s interest in explanation is
exclusively on how explanatory merit factors into evaluations of our theories.  His concern is with QI,
where one factor in determining whether a theory is best is its explanatory force.  Other factors include
breadth and simplicity.  For Field, once we have settled on a best theory, the only important question for
the indispensabilist is whether that theory can be written to avoid quantification over mathematical
objects.  

In the section cited by both Baker and Bangu, Field frames the indispensability argument as an
inference to the best explanation and makes clear that his allusions to explanation are not meant to
distinguish an explanatory argument from the standard one.

74 See Field 1989: Chapter 1, §5 and Chapter 3.
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If our belief in electrons and neutrinos is justified by something like inference to the best
explanation, isn’t our belief in numbers and functions and other mathematical entities equally
justified by the same methodology?... I think that this sort of argument for the existence of
mathematical entities (the Quine-Putnam argument, I’ll call it) is an extremely powerful one, at
least prima facie... [I]t says that the very same explanations in which the postulation of
unobservables is essential are explanations in which the postulation of mathematical entities is
essential: mathematics enters essentially into our theory of (say) electrons.  There seems to be no
possibility of accepting electrons on the basis of inference to the best explanation, but not
accepting mathematical entities on that basis (Field 1989: 17).

Field also explicitly refers to his own work rewriting NGT as a response to this so-called
explanatory argument.  And he moves directly from talk about explanation to talk about theories.

What we must do is make a bet on how best to achieve a satisfactory overall view of the place of
mathematics in the world...  My tentative bet is that we would do better to try to show that the
explanatory role of mathematical entities is not what is superficially appears to be; and the most
convincing way to do that would be to show that there are some fairly general strategies that can
be employed to purge theories of all reference to mathematical entities (Field 1989: 18; see also
fn 15 on p 20).

Field is clearly thinking of explanation on a traditional covering-law account, in which
explanations are done by our best scientific theories.  Field even says that an explanation is, “A relatively
simple non-ad hoc body of principles from which [the phenomena] follow” (Field 1989: 15).

The philosopher’s interest in scientific theories derives in part from their uses in explanations. 
We have a related interest in theories because of their uses in making predictions.  We might also have a
brute interest in the ways in which scientific theories can represent facts about the world.  These
considerations are linked, especially in regards to the indispensability argument.  The question to which
the indispensability argument is relevant is whether we should believe in the existence of mathematical
objects.  We appeal to theories or explanations in attempting to answer this question only insofar as we
think that theories or explanations are relevant to the question of what we should believe exists.  QI
refers to theories only because we might, with Quine, believe that what we should believe to exist is what
our best theories say exists.  For someone who thinks of explanation as focused on theories because our
commitments are to be found in our best theories, as I believe Field does, the difference between
explanation and theory is moot.

The same phenomenon, sliding inconsequentially between appeals to theories and appeals to
explanations, appears in Colyvan’s early work.  In The Indispensability of Mathematics, he presents what
he calls a scientific indispensability argument, which refers to theories, and then says that such an
argument can be an explanatory argument.

Argument 1 (Scientific Indispensability Argument) If apparent reference to some entity (or
class of entities) î is indispensable to our best scientific theories, then we ought to believe in the
existence of î.
In this formulation, the purpose, if you like, is that of doing science. This is a rather ill-defined
purpose, and I deliberately leave it ill defined for the moment. But to give an example of one
particularly important scientific indispensability argument, with a well-defined purpose, consider
the argument that takes providing explanations of empirical facts as its purpose. I’ll call such an
argument an explanatory indispensability argument (Colyvan 2001: 7).
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For Colyvan in 2001, as for Field, there is no difference between the standard indispensability
argument, like QI, and an explanatory argument.  It is really not until Baker’s 2005 paper, which
introduced his influential cicada example, that talk shifted to a new explanatory indispensability
argument, distinct from the standard one.  This version was formulated in Mancosu 2011 (originally
2008) and then in Baker 2009.  As Bangu rightly notes, Baker framed the new argument as a response to
a debate between Melia and Colyvan.75  “Despite their opposing sympathies, both authors agreed that it is
not enough - for the purposes of establishing platonism - that mathematics be indispensable for science; it
has to be indispensable in the right kind of way. Specifically, it needs to be shown that reference to
mathematical objects sometimes plays an explanatory role in science” (Baker 2009: 613).  

By that point, it had become clear that, for proponents of the new argument, explanation was not
merely playing its old role as a theoretical virtue helping us choose among different theories.  The
eliminability of mathematical theorems from scientific theories, in light of the new argument, might not
be decisive in favor of the dispensabilist.

Credit for the new argument, EI, seen as distinct from QI, should thus really go to Baker, rather
than Field or Colyvan.  Still, in evaluating the explanatory argument, its provenance does not matter.  But
the ways in which appeals to Field’s so-called special explanatory argument seem to ignore how
explanation functions in the standard argument are revealing.  Proponents of the new argument believe
that they are providing a new and strengthened version of the indispensability argument, but, as I show in
this chapter, they are most charitably read as alluding to the standard one.

So let’s move on to evaluating EI.  I’ll start by defending the first premise and then proceed to
showing how the second premise either fails to distinguish EI from QI or just fails.

§4: Mathematical Explanations in Science
Debate over EI has mainly focused on EI1, the claim that there are genuinely mathematical

explanations within science.  Examples of mathematical explanations of physical phenomena can be used
to support either QI, taking explanatory merit as a theoretical virtue, or EI.  Examples which are
proffered as support for QI can thus carry over as support for EI.  Colyvan 2001, for example, presents
three cases intended to support the claim that standard, mathematized theories have greater explanatory
merit than their nominalist correlates.

ME1. Bending of light.  The best explanation of light bending around large objects is geometric,
rather than causal. 

ME2. Antipodes.  The Borsuk-Ulam topological theorem, along with appropriate bridge
principles, explains the existence of two antipodes in the Earth’s atmosphere with the
same pressure and temperature at the same time.

ME3. The Fitzgerald-Lorentz contraction.  Minkowski’s geometrical explanation of the
contraction of a body in motion, relative to an inertial reference frame, relies on
equations in four dimensions, representing the space-time manifold.76

Colyvan 2007 presents three further illuminating examples. 

ME4. Squaring the circle.  That ð is transcendent explains why we can not construct a square
with the same area as a circle, using straight-edge and compass.

75 See Melia 2000; Colyvan 2002; and Melia 2002.

76 See Colyvan 2001: 81-6.



AP and the IA, Chapter Seven: The Explanatory Indispensability Argument, page 95

ME5. Mountaineering.  A hiker, leaving base camp on one day and top camp the next, at the
same time, will pass one point on the trail at the exact same time on both days.

ME6. Altruism.  Simpson’s paradox helps explain how a maladaptive trait like altruism can
succeed despite the fact that altruistic populations, taken individually, are less fit.77

Not all of these examples are equally compellingly described as mathematical explanations of
physical phenomena.  Baker rightly worries about the status of the geometry on which ME1 and ME3
rely.  If the relevant geometry is physical geometry, then the explanation may proceed without appeal to
pure mathematics.  Baker also argues that ME2 is a prediction rather than an explanation.  There is no
antecedent why-question, a requirement for explanations, since we are unlikely to discover the two
antipodes: there are insurmountable limitations on the precision of our instruments and no independent
interest in the phenomenon.  Still, one can easily provide a deduction or unifying argument which yields
the given phenomenon.  Leng also complains that ME2 requires contentious idealizations, and so the
requisite bridge principles will not apply.  Still, these worries do not impugn the claim that if such
antipodes were found on Earth, the Borsuk-Ulam theorem would help explain them.78

Leng also calls ME4 a prediction.  But it is not a prediction of a physical fact.  It is possible to
construct a square with an area arbitrarily close to that of a given circle, by choosing arbitrarily close
rational approximations of pi.  We can draw a square-ish region with the same area as a given circle,
within any given margin of measuring error.  Still, if we had arbitrarily good measuring tools, we could
always find a difference in the areas of the square and circle.  If we found that we could not square the
circle, the transcendence of pi could help explain that fact.

ME5 is more plausibly an explanation, rather than a prediction.  But ME6 may not be even be
true.  Colyvan cites Malinas and Bigelow to support his claim.  They conclude only that the mathematical
result is worth examining since it could explain the persistence of altruism.  “It is of considerable
theoretical significance to explore the applications of Simpson’s Paradox, to see whether this might help
to explain not only the altruism but also the irrationality, inefficiency, laziness and other vices that may
prevail in populations, and that can cause a population to fall short of the economic rationalist’s or
Darwinian’s ideal of the ruthlessly efficient pursuit by each individual of its own profits or long-term
reproductive success” (Malinas and Bigelow 2008).

Baker, interested in defending the claim that there are mathematical explanations of physical
phenomena but worried about Colyvan’s ME1-ME6, produced an influential cicada example.

ME7. Cicadas.  That prime-numbered life-cycles minimize the intersection of cicada life-cycles
with those of both predators and other species of cicadas explains why three species of
cicadas of the genus Magicicada share a life cycle of either thirteen or seventeen years,
depending on the environment.

The phenomenon of cicadas having prime-numbered life-cycles intrigued biologists, who sought
an explanation.  Baker claims that the phenomenon is explained with indispensable appeal to
mathematics.

77 See Colyvan 2007: 120-1.

78 See Baker 2005: 226-7 and Leng 2005: 181-2.
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CP CP1. Having a life-cycle period which minimizes intersection with other (nearby/lower)
periods is evolutionarily advantageous.

CP2. Prime periods minimize intersection (compared to non-prime periods).
CP3. Hence organisms with periodic life-cycles are likely to evolve periods that are

prime.
CP4. Cicadas in ecosystem-type, E, are limited by biological constraints to periods from

14 to 18 years.
CP5. Hence cicadas in ecosystem-type, E, are likely to evolve 17-year periods (Baker

2009: 614).

Baker’s argument is that the mathematical explanans at CP2 supports the empirical explanandum
at CP3.  As Baker notes, CP3 is a “‘mixed’ biological/mathematical law.”  He uses this law to explain the
further empirical claim CP5. 

Bangu explores a worry about ME7, one which would hold for other examples like Colyvan's
ME3.  He presents four desiderata of examples used to support EIA1.  In addition to, first, their
indispensable uses of mathematics and, second, their being genuinely mathematical explanations, they
should, third, be fairly simple.  Since rewriting theories to avoid quantification over mathematical objects
is mainly a philosopher's project, not of compelling interest to many scientists or mathematicians,
relevant techniques for eliminating mathematics may not yet be developed.  The indispensabilist should
avoid resting the case on a lack of nominalist strategies which is due only to the difficulty of the task.79

Most relevantly to the case of ME7, proponents of EI should not, fourth, beg the question by
presenting examples in which the explanandum contains ineliminable uses of mathematics.  Bangu
argues that some purported mathematical explanations of physical phenomena, like ME7, are really
mathematical explanations of mathematical phenomena and so question-begging.  Specifically, to apply
the mathematical theorem used in CP2 to the case at CP3, we need bridge laws to assurance that number
theory applies to the cicadas’ cycles; the pure number-theoretic premise refers to numbers and says
nothing about life-cycles and their intersections.

Bangu argues that the explanandum in question at CP5 is, like CP3, a mixed statement composed
of both mathematical and physical facts: a physical phenomenon (the time interval between successive
occurrences of cicadas); the concept of a life-cycle period, expressed in years; the number seventeen; and
the mathematical property of primeness.  The mathematical explanation, he claims, only explains the
mathematical portions of the explanandum.  “Since primeness is a mathematical property, it is not
surprising that we have to advance a mathematical explanation of its relevance, in terms of specific
theorems about prime numbers” (Bangu 2008: 18).

Thus, Bangu presents ME8, the banana game, to avoid what he sees as Baker’s violation of the
fourth desideratum.  In the game, two players compete to collect bananas by choosing among crates filled
with unknown numbers of bananas.  By adjusting the probabilities of choosing some crates over others,
the game can be constructed so as to ensure the victory of one side over the other, even when the losing
side has more bananas to choose from, as long as the probability of choosing the crates with large
numbers of bananas is sufficiently low.  In Bangu’s case, the explanandum, that one side consistently
wins, does not contain ineliminable uses of mathematics.  But the explananda include mathematics in the

79 Relatedly: “As a consequence of nominalism’s being mainly a philosopher’s concern, this open 
research problem is moreover one that has so far been investigated only by amateurs - philosophers and
logicians - not professionals - geometers and physicists; and the failure of amateurs to surmount the
obstacles is no strong grounds for pessimism about what could be achieved by professionals” (Burgess
and Rosen 1997: 118).
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forms of probabilities and expected values.
Recent work on EI has seen a profusion of further examples supporting EI1.  Lyon and Colyvan

2007 discuss (ME9) how the honeycomb conjecture in mathematics explains the structure of some bee
hives.  The relevant geometric theorem, a conjecture for over two millennia which was proven in 1999, is
that a regular hexagonal grid divides a surface into regions of equal area with the least total perimeter.

Mancosu 2011 notes (ME10) that the twisting tennis racket theorem explains why a tennis
racket, held horizontally and tossed to rotate about its intermediate principal axis, will make a near-half
twist around its handle.  Mancosu also cites (ME11) Peter Lipton’s observation that a simple geometric
fact explains why a snapshot of a bundle of sticks tossed in the air will show significantly more of the
sticks closer to the horizontal than to the vertical: there are more ways to be horizontal than vertical.

In response to cases such as these, Juha Saatsi argues that the proponent of EI has not shown that
mathematics plays an explanatory role in such examples.  Saatsi believes that the mathematics in these
cases continues to be mostly representational.  “[T]he fact that mathematics can give us knowledge (or
better justified beliefs) of certain physical facts does not automatically entail that it thereby plays an
explanatory role” (Saatsi 2011: 145).

The central claim of this chapter is that EI fails because its second premise is false.  If Saatsi is
correct, then the proponent of EI has problems with the first premise as well.  But whether all of these
examples work exactly as proponents of EI require is too strong a demand either for establishing EI1 or
for satisfying Bangu’s four desiderata.  What is important is the underlying plausible claim that there are
mathematical explanations of physical phenomena.  The examples ME1-ME11 describe physical
phenomena.  They invoke mathematics to explain those phenomena.  It may be possible to re-describe
some of the phenomena or explanations either to eliminate or to isolate the mathematical elements, or to
show that the mathematics continues to play a merely representational role.  But as they stand, such
examples provide decisive, unsurprising evidence for EI1.

§5: Two Concepts of Explanation
The real problem with EI is not at EI1, but at EI2, the claim that we should believe in the objects

to which our explanations refer.  Not all uses of mathematics in our discourse compel our belief in
mathematical objects.

For example, the inference IM, though it uses a bit of elementary arithmetic, is of a type that
should have little weight in our beliefs about numbers.

IM I have two mangoes.
Andrés has three different mangoes.
So, together we have five mangoes.

Such simple, adjectival uses of arithmetic do not do not justify our mathematical beliefs in part
because they are so easily avoided in formal languages like those of first-order logic.  

IN (�x)(�y)(Mx C My C Hix C Hiy C x�y)
(�x)(�y)(�z)(Mx C My C Mz C Hax C Hay C Haz C x�y C x�z C y�z) C (�x)[(Mx C Hax) e

-Hmx]
� (�x)(�y)(�z)(�w)(�v)[Mx C My C Mz C Mw C Mv C x�y C x�z C x�w C x�v C y�z C

y�w C y�v C z�w C z�v C w�v C (Hix w Hax) C (Hiy w Hay) C (Hiz w Haz) C (Hiw
w Haw) C (Hiv w Hav)]80

80 Compare to Field 1980: Chapter 2 and to Baker 2009: 619.
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The contrast between IM, the inference which contains mathematical terms, and IN, the parallel
inference which contains no mathematical terms, demonstrates simply the underlying theme of
dispensabilist responses to the indispensability argument: some statements which use numbers may be
taken as convenient shorthand for complicated statements that do not.  There may be statements more
complex than those in IM from which mathematical objects are ineliminable.  Indeed, this is the ongoing
debate over the possibility of constructing dispensabilist projects for all scientific theories.  But the
eliminability of numbers is uncontroversial in some cases.  If someone were to present IM as a reason for
believing that there are numbers, anyone would be justified in denying the inference to the existence of
mathematical objects by claiming that the uses of numbers in IM are merely casual and proffering IN to
support that claim.  Whether we believe in mathematical objects or not, IM is not a good reason for
believing in them.

IM thus does not reflect our serious commitments.  When we want to display our those
commitments, we speak most soberly, invoking parsimony and rewriting such casual sentences.  We
reflectively remove from our language references to sakes and behalves and point-masses and frictionless
planes, and to adjectival uses of natural numbers.81  IN makes it clear that the essential subjects of IM are
mangoes, not numbers.

Now, consider the question, “Why are there five mangoes here?”  A fine explanation of the
presence of five mangoes may be that I brought two and Andrés brought three; the inference IM may be
taken to explain its conclusion.  IM is not a complete, best theory of mangoes.  It requires background
assumptions about object constancy and that mangoes do not annihilate each other when, say, there are
more than three together.  But it is an explanation that will satisfy any ordinary person, and even a
philosopher who is not thinking too hard about theories of explanation.  In contrast, IN is ordinarily not a
very useful explanation of anything.  The only way for IN to have any explanatory force for most folks is
to translate it back to something like IM.

Both IM and IN have their virtues.  IM provides a perspicuous and easily-understood
explanation.  The conclusion of IN follows from its premises in first-order logic by purely computational
means.  Noting its formal elegance, a philosopher may insist that the first-order derivability of its
conclusion contributes to making IN explanatory.  To determine which inference is more explanatory,
though, one would have to know more about the nature of explanation.

The philosophical literature on explanation is messy in part because of a natural tension in our
concept of explanation, a tension exemplified by the contrast between IM and IN.  In an ordinary sense,
explanation seems highly contextual, perhaps even pragmatic.  What one person takes as explanatory
may be incomprehensible (and thus not explanatory) for another person.  For example, while one can say
that the principles of general relativity explain gravitation, they do no such thing for most of us, since we
do not understand the fundamental laws.  Still, on plausible models of explanation, general relativity may
well explain gravitation.  Similarly, for many people, IN lacks explanatory power while IM is
explanatory, though the difference may be minimal for those proficient with first-order logic.  But IN is
the kind of inference on which many models of explanation rely.

On covering-law accounts, for example, the explanation of a state of affairs is an inference
involving the laws of a serious theory combined with appropriate initial conditions.  The theories to
which such explanations appeal are ones in which we hope to speak most strictly, ones which attempt to
cut nature at its joints.  This is what Hempel called the empirical condition of adequacy for the
deductive-nomological (D-N) model of explanation.82  Refinements of the D-N model, like Railton’s

81 On sakes and behalves, and the general strategy of speaking austerely, see Quine 1960: §50.

82 See Hempel and Oppenheim 1948: 248.
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model of probabilistic explanation (Railton 1978) or Kitcher’s unificationist account (Kitcher 1981),
work similarly.  Kitcher, for example, invokes unifying argument patterns which also answer why-
questions with inferences made by a serious theory.  Salmon’s causal-mechanical model focuses
explanations on real causal processes as opposed to mere statistical generalities.

For proponents of such metaphysical models, the general principles and particular claims
invoked by an explanation should be true (or empirically correct).  Ordinary explanations may be either
shorthand for proper explanations or loose invocations of the term.  Proponents of such models of
explanation aim to increase understanding for an ideal or sufficiently educated reasoner.  But the central
focus of such theories is on how they represent the world, not on how they foster people’s understanding. 
Railton, for example, promises, “An account of probabilistic explanation free from relativization to our
present epistemic situation” (Railton 1978: 219, emphasis added).

Part of the reason that some models of explanation fail to increase our understanding is that they
explain lower-level particular phenomena by appealing to more universal and general laws.  The laws are
often more difficult to comprehend than particular events.  Michael Friedman, hoping to improve on D-N
accounts by seeking an objective yet psychological account of explanation, noticed this phenomenon. 
“As a matter of fact, many scientific explanations relate relatively familiar phenomena, such as the
reflecting and refracting of light, to relatively unfamiliar phenomena, such as the behavior of
electromagnetic waves.  If the view under consideration were correct, most of the explanations offered by
contemporary physics, which postulate phenomena stranger and less familiar than any that they explain,
could not possibly explain” (Friedman 1974: 10).

Some proponents of theories of scientific explanation, especially of the standard D-N model,
denigrate, at least at times, that aspect of ‘explanation’ which concerns actual cognition, actual
understanding.  Again, Friedman notices the phenomenon.  “In some of their writings defenders of the
D-N model give the impression that they consider such a task to lie outside the province of the
philosopher of science, because concepts like ‘understanding’ and ‘intelligibility’ are psychological or
pragmatic” (Friedman 1974: 7).

By pointing out that our accounts of explanation do not always aim at being epistemically
satisfying, at explaining the unfamiliar in terms of the familiar, I do not intend to criticize them.  Indeed,
as Toulmin argues, it is essential to explanations that they fail to do so.  “If we were to insist on
accounting for the ‘unfamiliar’ in terms of the ‘familiar’, instead of vice versa, we should never be able
to shake ourselves loose of Aristotelian dynamics...  [A]s science develops, this turns into ‘relating the
anomalous to the accepted’, and so in due course into ‘relating the phenomena to our paradigms’.  This is
inevitable” (Toulmin 1961: 60-1).

Some proponents of standard accounts of explanation attempt to assimilate inference and
understanding.  To account for residual concerns that explanations should at least have some relation to
understanding, the proponent of a standard theory may promise that when we understand the laws or
causal structures or unifying principles underlying a phenomenon, we will understand why it occurred. 
But the attempt to provide an objective account of explanation which is independent of any particular
agent remains strong and the attempts to account for human understanding within such a model fall short. 

So, there are two distinct senses of ‘explanation’ on the table.  One sense is represented by the
formal inference IN and by standard accounts of scientific explanation.  While IN is a simple logical
inference which suppresses auxiliary presuppositions involving laws governing mangoes, we could easily
tidy it up, appealing to the relevant laws.  IN could thus play a central role in a formal scientific
explanation of why there are five mangoes here.  Such explanations seek, above all, to represent the way
the world is.

The other sense is represented by the casual inference IM.  Such explanations answer, or at least
forestall, our why questions.  They may refer to idealizations, like frictionless planes. They may explain
the height of a flagpole by the length of its shadow, instead of the other way around.  They may appeal to
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sakes or behalves.  They may invoke models which work, like any metaphor, only so far.  When we
invoke metaphors in science or use models for explanation, we do not particularly care whether the
objects to which we refer are real ones.  For example, we do not think that the atom is literally
constructed like the solar system; nevertheless, the image of electron orbits can be a useful heuristic.  We
know not to take it too seriously, that the metaphor breaks down at some point.  Such explanations may
be perfectly good answers to ordinary why questions.  But they do not purport to track the fine structure
of the universe.

When I explain the presence of three mangoes on the table as the result of my bringing four but
you having eaten one, or when I explain my actions as having been done for someone else’s sake, I may
successfully communicate using language which does not reflect the structure of the world.  Explanations
in this epistemic sense are often agnostic concerning their commitments, including mathematical ones. 
They can invoke mathematical terms which may be interpreted variously by platonists, fictionalists, or
those who believe that mathematical terms are oblique references to other things, like possible
arrangements of concrete objects.

Let’s call the kind of explanation that IM provides, but that IN does not generally provide,
epistemic.  Epistemic explanations need not be taken literally.  In contrast, we can call the D-N and
related kinds of explanation metaphysical for their attempts to get at the fundamental structure of the
world.  Given their central characteristic, metaphysical explanations are especially apt for the purposes of
revealing our ontological commitments, for expressing what we think exists.83  

While both senses of ‘explanation’ have legitimate uses, the metaphysical and epistemic senses
are incompatible.  Epistemic explanations, and epistemic aspects of explanation, are independent of the
way the world is without failing, for that reason, to be explanatory.  Criteria for good epistemic
explanations will include intelligibility to a particular audience and familiarity.  They will vary with the
audience.  Criteria for good metaphysical explanations include getting at the right laws and general
principles.  They transcend their audience.  They are apt for expressing what we think exists.  We must
take the references of their terms seriously.  

It is quixotic to try to capture the contrasting kinds of explanation with a single account.  The
essential tension in our concept forces any account to one side or the other, toward actual human
understanding or toward representing or expressing the fundamental structure of the world.

There are two important claims in this section illustrated by the differences between IM and IN.

Claim 1: We are committed to mathematical objects not by our casual uses of numbers, but only
when we are speaking most seriously.  The mere presence of mathematics in an
explanation or inference is, by itself, no evidence that we should believe in the
mathematical objects to which it refers.

Claim 2: The theory we use to specify our ontological commitments may not be most useful
when we want to explain facts about the world, in the epistemic sense of ‘explain’. 
Thus, the degree to which a theory is explanatory, whether or not it includes
mathematics, may not be proportional to the degree to which we should believe in the
objects to which it refers.

83 Brown 2012 distinguishes these two senses of ‘explanation’ without naming them.  Salmon
1984 distinguishes epistemic, modal, and ontic explanations, and traces that distinction to Aristotle. 
Salmon focuses on the D-N model to characterize epistemic explanation because of the expectations
raised in us by considering D-N inferences; I take D-N explanations to be metaphysical because of their
employment of empirically adequate laws.  Salmon also focuses on causation for ontic explanation, a
focus which precipitously rules out mathematical explanations.
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The central thesis of this chapter is that the explanatory indispensability argument is no
improvement on the Quinean argument because it depends on an equivocation between the two senses of
‘explanation’.  If it appeals to a metaphysical notion, then it is just a restatement of the original argument. 
The central question is whether mathematical objects can be eliminated from our best theories: can
Baker’s cicada case, or other supporting examples, be written in a canonical language apt for expressing
our serious commitments without mathematical terms?  Projects like that of Rizza 2011, which shows
how to nominalize Baker’s ME7, would be apt responses.  Thus, if EI is going to be an enhanced or
extended version of the indispensability argument, its proponents must appeal to a different model of
explanation.  But as soon as the proponent of the explanatory argument gives up the strictly metaphysical
sense of ‘explanation’, she undermines the essential premise, EI2, that we should believe that all of the
terms used in our explanations refer.

§6: Epistemic Explanation and the Explanatory Indispensability Argument
To see further how important the epistemic sense of ‘explanation’ is for the explanatory

argument, reconsider the claim, from Lyon and Colyvan, that the explanatory power of phase-space
formulations of theories is unrecoverable in nominalist reformulations.  On any of the standard
interpretations of ‘explanation’, ones in which explanation is provided by a deductive inference using
laws of our best theories as premises, Lyon and Colyvan’s claim is false, ex hypothesi.  Conserving
explanatory power is a standard, minimal requirement on nominalist reformulations, and it works unlike
other theoretical virtues.  One might wonder whether sacrifices in simplicity of ideology are worth
parsimony in ontology.  But dispensabilists may not give up explanatory power, in the standard sense, in
their reformulations.  Field constructs representation theorems precisely to support the claim that his
reformulation lacks no explanatory power of the standard theory.  One just could not successfully
nominalize a scientific theory by producing an alternative with less explanatory power unless one is
using a different non-metaphysical sense of the term.

Lyon and Colyvan’s claim is plausible, though, if we interpret their use of ‘explanatory power’ in
an epistemic sense.  Unlike standard scientific theories, dispensabilist reformulations will be
imperspicuous, useless to working scientists.  Dispensabilists generally do not argue that scientists
should adopt the reformulations.  Indeed, Field grants that standard theories are more epistemically
explanatory by arguing that mathematics is conservative over standard scientific theory, that adding
mathematical axioms to nominalist theories will not allow one to derive any further nominalist
conclusions.  The nominalist wants to show that mathematics is conservative precisely because we are
inevitably going to take advantage of the greater epistemic explanatory force of standard theories.  Thus,
the explanatory indispensability argument, in order to differentiate itself from QI, must rely on a notion
of explanation that is not metaphysical.

We can also see that EI depends on an epistemic sense of explanation by noting that standard,
metaphysical accounts of scientific explanation do not comfortably apply to mathematical explanation. 
Many mathematical inferences conform to standard criteria for scientific explanation without being
explanatory.  For example, one can derive ‘2+2=4’ from basic axioms, but such derivations are not
ordinarily taken as explanations.  Indeed, the amusement with which we reflect on the fact that it takes
several hundred pages in Principia Mathematica to arrive at the proof of ‘1+1=2’ speaks directly to the
ways in which we take such derivations to be non-explanatory.

Some mathematicians and philosophers of mathematics distinguish between mathematical proofs
which are explanatory and those which are not.  Often, when there are multiple proofs of a given
theorem, mathematicians will compare them according to how well they explain the theorem.84  Within

84 See Steiner 1978 and Hafner and Mancosu 2005.
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mathematics, it is clear that any evaluation of proofs as explanatory or not, if that is even possible, will
have to take factors other than derivability from basic axioms into account.  Mathematical explanation
may be explicated psychologically or by appeal to unifying proofs, for example.85

An alternative approach for understanding the nature of mathematical explanation would be to
claim that mathematical explanations of physical phenomena have two parts: a strictly mathematical
explanation of a strictly mathematical theorem and a broader explanation of the physical phenomenon
which invokes the mathematical theorem.  The defender of the explanatory argument could claim that the
nature of the pure mathematical explanation is isolated from, and thus irrelevant to, the nature of the
broader explanation.86  

But unless broader explanations are to take mathematical results as brute facts, the nature of
purely mathematical explanations is not isolatable.  Uses of mathematics in science naturally raise
questions about why these results hold: their scope and limits and their relations to other mathematical
theorems.  While scientists often just want the proper formula or relevant set of differential equations,
understanding the relations between one mathematical formula and another is central to understanding
how and why the mathematics applies.  Narrow mathematical theorems often generalize, from claims
about, say, squares to claims about all polygons.  The more general a theorem, the broader its
applications.  It is at least odd to say, as the proponent of EI here imagined does, that we should believe
in the existence of mathematical objects because they play an ineliminable explanatory role in science
while dismissing the nature of mathematical explanation as irrelevant.87

A third option for the proponent of the explanatory argument, faced with my charge that
mathematical explanation in the sciences may not be metaphysical, is to claim that there is no such thing
as explanation in pure mathematics.  Then, the sense of ‘explanation’ invoked in EI will depend
exclusively on the nature of the scientific explanations used to support the first premise.  And again, if
they are metaphysical explanations, EI is no improvement on QI, but if they are epistemic, we lack a
good reason to take the references of that explanation most seriously.  

Whether or not the nature of pure mathematical explanation is relevant, the proponent of EI must
defend the claim that we should take our mathematical explanations of physical phenomena seriously.  If
they are metaphysical explanations, the proponent of EI can adopt Quine’s argument for the claim.  But
then EI is no improvement on QIA.  If they are epistemic explanations, the argument will be difficult to
make: there is no good reason to take the references of epistemic explanations, especially the contentious
mathematical references, literally.  We need not be fully serious when we provide an epistemic
explanation because explanations which facilitate our subjective understanding may not reveal our most
sincere commitments.

§7: Weaseling Away the Explanatory Argument (But Not the Standard Argument)
Proponents of EI generally presume that their central challenge is to establish that there are

mathematical explanations of physical phenomena, EI1.  Even if not all of the examples ME1-ME11
work the way that their proponents want them to work, taken together with the epistemic interpretation of

85 Lange 2010 contains a useful discussion in the context of mathematical coincidence.

86 Thanks to Alan Baker for raising this suggestion in conversation.

87 Mancosu agrees: “It...appears that a proper account of explanations in science requires an
analysis of mathematical explanations in pure mathematics” (Mancosu 2011: §3.2).  Baker dissents:
“[Science-Driven Mathematical Explanations] do not (and should not) incorporate proofs of the
mathematical results to which they appeal” (Baker 2012: 264).
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‘explanation’ they provide a compelling case for EI1.  The real problem with such examples is that we
want a reason to take such examples as expressing our commitments.  EI2, which claims that we ought to
be committed to the objects postulated by mathematical explanations of physical phenomena, is
problematic for reasons I discussed in §5: we need not be ontologically serious when we provide an
epistemic explanation.  Once we realize that the sense of ‘explanation’ relevant in EI is epistemic, any
force that EI2 is supposed to have is lost.  There is little reason to believe that explanations which
facilitate our subjective understanding are ones in which we reveal our ontological commitments by
speaking most soberly.  EI is thus highly susceptible to weaseling.  EI seems plausible if we have a
metaphysical sense of ‘explanation’ in mind; but then it’s no improvement on QI. 

Leng also argues that EI is susceptible to weaseling, but she derives her response to the
explanatory argument from her response to QI.  “If the original indispensability argument can be rejected
on the grounds that some theoretical components can be good representations without being true (so that
‘fictional’ assumptions would do the representative work just as well), then the same considerations can
be applied in the case of theoretical explanations” (Leng 2005: 187).

Leng relies on Melia’s claim that mathematics merely provides a language for representing or
modeling physical facts.  Such representations need not be ontologically committing.  “Nothing is lost in
the explanation of cicada behavior if we drop the assumption that natural numbers exist” (Leng 2005:
186).  She makes similar claims against several of Colyvan’s particular examples, including ME2 and
ME4.  Such explanations, she claims, do not allow us to infer the truth of the mathematics involved.

We model the earth as a sphere, and pressure and temperature as continuous functions on the
surface of this sphere.  Once we have done this, the Borsuk-Ulam theorem can be seen to apply,
and, to the extent that are [sic] model is a good one, we can draw a conclusion about the
existence of a pair of points on the earth’s surface.  Does the question of whether the sphere and
the functions in our model really exist matter to the success of this piece of reasoning?  It is hard
to see how it should (Leng 2005: 182; see also 179).

While these weaseling claims from Leng and Melia are appropriate responses to EI, they do not
extend to QI and so can not derive from a successful objection to QI.  We can not expect our epistemic
explanations to be the locus of our ontological commitments.  But it is reasonable to expect our
commitments to be represented by our best theories, in the sense required by QI or by a metaphysical
sense of ‘explanation’.  We constructed IN from IM precisely to be clear about our commitments.  Our
best theories are our best attempts to get at the structure of the world.  My claim that we can weasel away
our commitments to EI is not the wanton claim of one who stubbornly denies that we should believe any
reference to mathematical objects, even in our most serious theories.  It is the more measured claim that
only in our best theories can we be most confident in those references.

The weasel denies that we should believe in the objects in the domain of quantification of our
best theory.  Daly and Langford challenge the weasel in terms of a puzzle about rational belief.  “How
could it be rational to assert a theory if you believe both that the theory’s description of an abstract
domain is false and that that description is indispensable in describing the concrete world?” (Daly and
Langford 2010: 1115).

Daly and Langford are correct that at some point, we must speak seriously.  But since we should
not expect our serious commitments to appear in our explanations, the liability of EI to weaseling does
not extend to the original QI.  Thus, the nominalist can not use the aptness of weaseling to EI as a general
strategy for resisting the indispensability argument.  

Since EI is susceptible to weaseling, its defenders might re-cast the argument in a Quinean style,
including explicit instructions for speaking seriously.  Quine’s argument, re-cast for epistemic
explanations, would say that our ontological commitments are to be found in our best explanations.
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QEI QEI1. We should believe (epistemic) explanations of our sense experience.
QEI2. If we believe (epistemic) explanations of our sense experience, we must believe in

their ontological commitments.
QEI3. The ontological commitments of any explanation are the objects over which that

theory first-order quantifies.
QEI4. The explanations of our sense experience first-order quantify over mathematical

objects.
QEIC. We should believe that mathematical objects exist.

But QEI is no help at all to the defender of EI, since the conjunction of QEI1 and QEI2 is
implausible.  We need only believe our explanations in the sense in which we believe that we can re-cast
them in ontologically serious ways.  The chips are not down in our epistemic explanations.

If the indispensabilist is tempted to believe in mathematical objects because of an explanation
which uses mathematics, the explanation is not doing the work.  The work is done by the background
claim that there is a good theory supporting that explanation which requires those mathematical objects. 
Defenders of EI rely on a metaphysical notion of explanation in order to motivate the seriousness of our
speech and then switch to an epistemic notion of explanation in order to defend the viability of the claim
that there are mathematical explanations of physical phenomena.  If there are mathematical explanations
of physical phenomena, and we want them to be taken as ontologically committing, we could find a way
to fit the explanation into a traditional model so that QI applies and so that the dispensabilist has a fair
challenge to respond by removing mathematical references.  Alternatively, the indispensabilist can find a
way to argue not merely that there are mathematical explanations of physical phenomena, like ME1-
ME11, but also that these should be taken seriously, that such explanations are not mere heuristics.  Until
and unless some such defense is developed, the explanatory indispensability argument is no improvement
on the standard one.

§8: Toward an Autonomy Platonist Solution
We speak in ontologically serious tones only in the most austere version of our scientific theory. 

In a wide range of cases, scientific explanations are better if they include references to mathematical
objects.  But since our explanations need not appeal to our most parsimonious theories, we need not take
even the indispensable presence of mathematical objects in such explanations as ontologically serious.

Still, proponents of the explanatory indispensability argument present a serious case for the claim
that there are mathematical explanations of physical phenomena.  Even though that claim can not support
the argument for which they use it, we might wonder about the importance of such explanations.  There
are two distinct attitudes that one can take.  The weasel nominalist believes that their uses of mathematics
give us no reason to believe in mathematical objects.  The mathematics plays a representational role,
perhaps akin to idealizations in physics.  The indispensabilist can trot out compelling examples of
applications of mathematics, but the weasel is really a mule, refusing to admit that any of these uses of
mathematics are worth taking seriously.

The strength of the standard Quinean argument, which Field realized but which more recent
nominalists seem not to realize, is that we must, at some point, speak seriously.  To Daly and Langford’s
claim that it is irrational to assert a theory without believing its description of mathematical objects,
Melia responds that our expressive resources may be too impoverished to say what we want to say
without invoking mathematics.  “There is no a priori reason to suppose that the physical systems we wish
to represent can always be characterized intrinsically using languages and theories that make no
reference to the hypothesized abstract structures” (Melia 2010: 1119).  But then, how do we determine
the commitments of a theory?

The weasel thus seems to propose to return to the pre-“Two Dogmas” point when philosophers
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questioned the existence of electrons because we couldn’t see them directly.  The strength of Quine’s
indispensability argument arises from his proper insistence that we cannot invoke the physicist’s
theoretical commitments to electrons as reasons to believe in electrons without also being serious about
the references to mathematical objects used in the same theories.

In his 1946 Harvard lecture on nominalism, Quine coins the term ‘struthionism’ to apply to those
like Carnap (and now Melia and Leng), who refuse to take references to mathematical objects within
serious theories seriously.  ‘Struthionism’ has the Greek word for ostrich at its core, so there’s a third
creature in the nominalist’s menagerie: weasels, mules, and ostriches.

I have defended these ragtag creatures in their claims that our explanations of physical
phenomena need not impel us to believe in the referents of the mathematical terms they use.  But there is
still something uncomfortable about weaseling, despite Melia’s assurances that we can take back some
portion of our serious assertions.  Consider again Colyvan’s mountaineering example, ME5.  The
explanation of the existence of a point on the mountain which the hiker passes at the same time on
consecutive days includes a topological fixed point theorem.  In siding with the weasel, I argued that such
mathematical explanations give us no reason to believe in the existence of mathematical objects.  We are
still left wondering, though, whether we should believe in their existence and whether we can learn
anything from the fact that there are satisfying mathematical explanations of physical phenomena.

Explanations do seem to be more convincing if they do not refer ineliminably to fictional objects. 
Moreover, if we had an alternative justification of our beliefs in mathematical objects then we could
avoid seeing explanations such as ME1 - ME11 as appealing to fictional objects without taking their
invocations of mathematical objects as the grounds for our mathematical beliefs.  It is not that the
explanations themselves should be taken as ontologically serious.  I am suggesting that an explanation
which refers to fictional objects is less compelling than one which we can take fully literally.88  Those
who believe, like Field, that the indispensability argument is the only plausible justification of
mathematical beliefs are stuck either denying mathematical beliefs, and thus seeing scientific theories as
equivocal, or accepting the unfortunate consequences of Chapter Five.

Fortunately, we can maintain that the explanatory indispensability argument gives us no reason
to believe in pure mathematical claims while also saying that our best explanations may use mathematical
claims seriously.  That is the position of the autonomy platonist.

88 Christopher Pincock also wonders about the status of mathematics used in science without,
with the indispensabilist, taking it as justifying our mathematical beliefs.  “I will not argue here for the
strong claim that the only way to accept these theories is to be a platonist about mathematics, but only for
the comparatively weaker claims (1) that the presence of mathematics in our best confirmed scientific
theories forces us to offer some account of the subject matter of mathematics and (2) this account,
whether it turns out to be platonist or nominalist, must be a realist account that assigns the statements of
pure mathematics truth-values that accord with mathematical practice” (Pincock 2007: 265).



Chapter Eight: Motivating Autonomy Platonism

§1: From Indispensability to Autonomy Platonism
Mathematical platonism is among the most persistent philosophical views.  (It’s platonism, after

all.)  Our mathematical beliefs are among our most entrenched.  They have survived the demise of
millennia of failed scientific theories.  And unlike scientific theories, mathematical theories are, once
established, rarely rejected, and never for reasons of their inapplicability to empirical science.  

The purpose of this book is to contrast two different kinds of mathematical platonism: one based
on the indispensability argument and one which takes the justification of our mathematical beliefs to be
independent from, or autonomous of, our empirical beliefs.  Chapters Two through Seven examined the
indispensability argument from the perspective of a platonist who is asking whether and how her
mathematical beliefs can be justified.  I hope that it is clear that the indispensability argument fails to do
so.  The committed platonist must look for an alternative, autonomous view.  The platonism-curious
philosopher should explore other options.

I use ‘autonomy platonism’ for a position on which mathematical objects exist; some
mathematical claims are true, but not vacuously so; and, most importantly, our knowledge of these
objects and truths does not depend on our knowledge of empirical science.  In the remainder of this book,
I will defend autonomy platonism as the best account of these well-known phenomena and show that a
proper epistemology for autonomy platonism need be neither mystical nor spooky.

A significant motivation for autonomy platonism is its ability to avoid the Unfortunate
Consequences of Chapter Five:

UC1  Restriction: The indispensabilist’s commitments are to only those mathematical objects
required by empirical science.

UC2  Ontic Blur: The indispensabilist’s mathematical objects are concrete.
UC3  Causality: The indispensabilist’s mathematical objects may have causal powers.
UC4 Modal Uniformity: The indispensabilist’s mathematical objects do not exist necessarily.
UC5  Temporality: The indispensabilist’s mathematical objects exist in time.
UC6  Aposteriority: The indispensabilist’s mathematical objects are known a posteriori.
UC7  Methodological Subservience: Any debate over the existence of a mathematical object

will be resolved, for the indispensabilist, by the needs of empirical theory.

Because, unlike the indispensabilist, the autonomy platonist does not restrict her justification for
mathematical beliefs to the needs of empirical science, Restriction, UC1, is not a problem.  Our
mathematical commitments may be to those objects to which our best mathematical theories refer.

The autonomy of mathematical justification entails that there is no reason to assimilate
mathematical objects with concrete ones; they are best taken, as is natural, to be abstract, with no spatio-
temporal locations and no causal efficacy.  Thus the autonomy platonist can avoid UC2, UC3, and UC5. 
While autonomy platonists may disagree about whether mathematical objects exist necessarily, the
question of their necessity is not restricted by considerations of the contingency of the objects of
empirical science; Modal Uniformity, UC4, is not inevitable.  I will return to the question of necessity
when contrasting two kinds of autonomy platonism, in Chapter Nine.

Similarly, the autonomy platonist need not adopt a strictly empiricist epistemology and suffer
UC6, Aposteriority.  The autonomy platonist is free to adopt an account of the justification of our
mathematical beliefs which is naturally apriorist, as long as it is not spooky or mystical.  Lastly, and
obviously, the autonomy platonist adopts a strictly mathematical methodology in debates over
mathematical claims.  In asking about which large cardinal axioms to adopt, for example, the autonomy
platonist looks for ways in which set theory can be naturally and intuitively extended without
inconsistency.

Further regarding UC7, the indispensabilist paints an especially inaccurate picture of



AP and the IA, Chapter Eight: Motivating Autonomy Platonism, page 107

mathematical practice, one which is far better captured by autonomy platonism.  The continuum
hypothesis provides a clear example of how mathematical practice conflicts with the indispensabilist’s
philosophy of mathematics.  According to the indispensabilist, mathematical questions are to be
answered by examining our best (naturalist) scientific theory.  Our current mathematical axioms do not
settle the question of the size of the continuum, and provably so.  Gödel famously suggested that we
adopt new axioms to settle the question.  The question arises about how to decide which axioms to adopt. 
The indispensabilist claims that the answers are to be found in the needs of our best scientific theory. 
But it is unlikely that the size of the continuum will be settled by developments in physics.  Even if
physical science did require that the continuum were, say, à2, mathematicians would be unlikely to adopt
that result unless it were motivated by concerns beyond those of physics.  The mathematician looks to
purely mathematical criteria for such answers, and not to empirical science.

A further consideration motivating autonomy platonism arises from considerations in Chapters
Two through Seven, but especially of the explanatory indispensability argument.  While I have argued
that the inference from our uses of mathematics in science to the truth of mathematical claims is invalid,
it does seem that scientific theories and explanations are more satisfying when they include references to
mathematical objects.  The autonomy platonist, by distinguishing evidence for our mathematical beliefs
from the presumption of truth for mathematical claims made within scientific theories, can account for
this phenomenon without adopting an indispensability argument and its unfortunate consequences.  For
the indispensabilist, the desire for standard semantics forces us to commit to mathematical objects.  But
the desire for standard semantics should not compel our belief; it is merely is a wish that there are objects
to stand for mathematical terms.

Let’s imagine that the autonomy platonist can provide a justification for the beliefs in
mathematical objects sufficient for the needs of science: sufficient for the construction of scientific
theory and for scientific explanations.  Such a justification will not depend on the uses of mathematics in
science, ex hypothesi.  Still, when the autonomy platonist refers to mathematical objects in a scientific
theory, she is able to see such references as unproblematic, unlike the fictionalist, and unlike the
indispensabilist, who rejects autonomous justifications.  When the autonomy platonist is doing science,
she can appeal to mathematical machinery.  She can refer sincerely to Hilbert spaces and real numbers. 
But, she need not infer mathematical knowledge from these uses, and we need not so infer.  We are
already justified in believing that those mathematical objects exist.

Like the weasel, the autonomy platonist denies that we can justify our mathematical knowledge
on the basis of our uses of mathematics in science.  But we need not deny the existence of mathematical
objects and we need not give up an explanation of why mathematics is applicable to physical phenomena. 
A denial of the inference to mathematical objects from their indispensable uses in science is compatible
with the indispensabilist’s claim that our best scientific explanations are more convincing if they refer
only to real objects.

Thus the argument for autonomy platonism is distilled at AP.

AP AP1. We have mathematical knowledge.
AP2. If we have mathematical knowledge, it is either justified exclusively by the uses of

mathematics in science or is at least in part autonomous.
AP3. Our mathematical knowledge is not justified exclusively by the uses of

mathematics in science.
APC. Thus, at least some mathematical beliefs are justified independently of empirical

science (i.e. autonomy platonism).

AP3 is established by the failure of the indispensability argument.  AP2 is uncontroversial.  AP1
remains a worry.
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Some philosophers, seeing the problems facing indispensabilism, reject platonism.  For them, the
indispensability argument makes platonism acceptable because it seems to provide metaphysical and
semantic benefits with no epistemological cost: a platonist ontology with an empiricist epistemology. 
Such a position is too good to be true.  It depends on controversial assumptions like holism and
naturalism.  Its yield is limited and fails to characterize mathematics properly, as the Unfortunate
Consequences show.  It purports to yield platonism on the basis of experience which is contingent.

Thus, if the indispensability argument fails to establish platonism, those unwilling to expand
their epistemology to account for our apprehension of pure mathematics, may adopt an anti-platonist
ontology, perhaps embracing fictionalism or a reinterpretive strategy.  Given the failure of
indispensability, philosophers of mathematics really have two choices: either deny that mathematical
objects exist or show how we can know of them independently of science.  The most important opponent
of the autonomy platonist, then, is the anti-platonist.  In Chapter 1, I said that I would not say much about
anti-platonist views of mathematics.  Still, if you’re with me so far, and accept that the indispensability
argument is untenable as a defense of platonism, you might be tempted to adopt such a view.  A few
words about anti-platonism are thus in order.

§2: From Fictionalism to Autonomy Platonism
The most important defender of mathematical fictionalism is Hartry Field.  In this section, I

discuss three salient problems with Field’s fictionalism.  It provides a weakened account of the difference
between mathematical truth and falsity.  It unavoidably assimilates mathematical statements to ones
about which we get to say whatever we like.  Field’s arguments for fictionalism, which denies that
mathematical objects exist, really only establish skepticism.

Normally, we distinguish between ‘2+3=5’ and ‘2+3=6’ by calling the former true and the latter
false.  If we call all statements which refer to mathematical objects false, then both of these claims are
equally false.  The former is true in the standard story of mathematics, perhaps because it follows from
the Dedekind-Peano postulates, and the latter is false in the standard story of mathematics.  But the
standard story of mathematics is itself false.  

Like the indispensabilist, the fictionalist can distinguish the two sentences by their applicability. 
For the indispensabilist, the applicable one is true while the other is false.  For the fictionalist, the former
is merely more useful than the latter.  ‘2+3=5’ is no less false than ‘2+3=6’ since there are no
mathematical objects; it is merely more useful.  This distinction in utility fails to track an important
mathematical distinction.  Mathematical theories which are inconsistent with standard mathematics may
be also useful, just as false scientific theories may be useful.  If we attempt to replace the distinction
between mathematical truths and falsities with a distinction based on utility and application, assimilating
mathematical truths and mathematical falsities, we will get the distinction wrong.

The fictionalist also has difficulty explaining mathematical progress.  Consider the proof of
Fermat’s theorem.  The fictionalist denies that Wiles showed us something new about mathematical
objects when he showed that there are no n > 2 for which an + bn = cn.  We already knew that, since there
are no numbers.  The fictionalist can only credit Wiles with advancing our logical knowledge, a
knowledge that the theorem follows from certain axioms.  That is a weakened account of what we
learned and does not do the proof credit.  It abandons all questions of why we choose particular sets of
axioms or at least defers them, as the indispensabilist account does, to questions of application and
empirical science.

In addition to the anemic account of mathematical progress, fictionalism wrongly assimilates
mathematical sentences to other fictions which lack constraints about what we say concerning them. 
Fiction can defy physical and mathematical possibility.  In contrast, we do not have full freedom to say
whatever we like in mathematics.  A mathematical theory must at least be consistent.  We seek
interesting problems in mathematics, but even uninteresting problems and solutions can be
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mathematically good.  There is nothing mathematically wrong with demonstrating, in set-theoretic
language, the sum of 43 and 171, as long as we get 214, in the way that there would be something wrong
if we were to conclude that the answer is seven billion.

The fictionalist may respond that there are constraints on non-mathematical fictions, too,
depending on how we take the metaphor between mathematics and fiction.  Burgess considers a variety
of options.  Is mathematics like novels?  If so, then we really should have full freedom to create it in
whatever way we please; the metaphor fails.  Or is mathematics like mythology, as Leslie Tharp
suggests?  Or metaphors, as Stephen Yablo suggests?  Or fables?  If we take fables or mythology as
paradigms, we may defend a constraint on mathematics, derivative from the constraints on mythology
and on fables.  We can not make Athena the goddess of grain.

The fictionalist would be unwise to assimilate mathematics to myths or fables.  Aligning the
accounts of mathematical goodness and with mythology would lead to worrisome questions about the
standards for establishing mathematical theorems.  Myths are hardly evaluated at all.  We can construct
new myths, but these need not be consistent with the old myths.

Field argues that good mathematics is conservative, and conservativeness is close to
consistency.89  The fictionalist thus has standards for distinguishing among theories.  But the account of
mathematical conservativeness is not as clean as Field would like.  The fictionalist cares about
consistency only as a pragmatic condition on conservativeness.  An inconsistent mathematical theory is
no longer conservative, implying new nominalistically acceptable conclusions.

The difference between our freedom to construct fiction and the constraints on mathematics is
not decisive against the fictionalist.  The fictionalist need not commit to a positive account of
mathematics based on the positive account of novels, say.  Field does not suggest that we abandon our
standard mathematical criteria for acceptance of theorems, or revolutionize mathematical practice.  But
by making the analogy with fiction, he invites such comparisons. 

These problems apply to any fictionalism.  An additional problem arises for any version which
takes the non-existence of mathematical objects to be contingent.  Field and others grant that
mathematical objects could have existed.  For Field, the contingent non-existence of mathematical
objects is a consequence of his use of an object-level modal operator; he represents our knowledge of the
consistency of the axioms of ZF as‘�AXZF’.

90  But the possible existence of mathematical objects leads
to skepticism about mathematical objects, not fictionalism.

Consider the world as it is, and accept with the fictionalist the contingent non-existence of
abstract objects.  Now, imagine that numbers are suddenly created.91  Field’s modal account renders this

89 Conservativeness is the claim that the addition of mathematics to a theory which contains no
mathematics should license no additional nominalistically acceptable conclusions.  More formally: Let A
be any nominalistically statable assertion, N any body of such assertions, and S any mathematical theory.  
Take ‘Mx’ to mean that x is a mathematical object.  Let A* and N* be restatements of A and N with a
restriction of the quantifiers to non-mathematical objects.  This restriction yields an agnostic version of
the nominalist theory; it does not rule out the existence of mathematical objects.  S is conservative over
N* if A* is not a consequence of N*+S+‘�x-Mx’ unless A is a consequence of N.  ‘�x-Mx’, that there
is at least one non-mathematical object, is a technical convenience.  See Field 1980: 10-16.

90 See Field 1984.

91 Azzouni argues that nothing would change if mathematical objects ceased to exist, in Azzouni
1994: 56.  David Lewis denies that we can say anything sensible about how the world would be if there
were no numbers (Lewis 1986: 111).
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possible.  By causal isolation of abstract objects, we are in principle unable to know of them.  The
fictionalist can not say that abstracta do not exist, but only that we have no way of knowing.

None of the three problems I discussed in this section rely on taking mathematics to be
indispensable to science, as other arguments against fictionalism do.  For example, Maddy argues that
fictionalism fails to account for why one mathematical story seems most important.  “Oliver Twist,
whatever his other virtues, lives only in one good story among others, but the characters of mathematics,
no matter how we twist and turn, have a stubborn way of introducing themselves into a story that is our
very best of all” (Maddy 1990b: 204.)

Maddy thus denies fictionalism on indispensabilist grounds.  There is a best theory, she says, and
we can not seem to avoid mathematics when formulating it.  If we had to decide between fictionalism and
indispensabilism on this basis, the fictionalist theory is preferable.  The fictionalist can see the role of
mathematics in a best theory as a pragmatic matter.  Different mathematical stories apply differently to
different physical worlds.  But the fictionalist leaves us without an account of the ubiquity of
mathematics to which Maddy alludes.

The autonomy platonist, in fact, can provide a better account of application, since it is broader. 
Autonomy platonism is best able to account for new applications of mathematics since it provides
whatever mathematics might be needed in science.

Field argues that he can best account for the application of mathematics to empirical science,
through appeal to conservativeness.  For Field’s fictionalist, mathematics is applicable to science because
it is merely a convenient shorthand for claims which are properly empirical, about the structure of space-
time for example.  He constructs representation theorems to show that the quasi-mathematical theory
based on space-time yields the same theorems as standard real mathematics.  As evidence of the virtues
of his account, Field cites Michael Friedman as having rejected Field’s nominalism, while, “[E]ndorsing
its account of the applications of mathematics” (Field 1985a: 191).92

Field recognizes, though, that the platonist can also take his representation theorems as an
account of application.  The platonist does not deny the legitimacy of the fictionalist’s tools; he just has
more.93  If Field can develop representation theorems for all applications of mathematics, then the
platonist and the fictionalist can use the same account.

The autonomy platonist, ex hypothesi, has an epistemology for mathematical objects as well as
an independent account for empirical objects.  For FBP, for example, our knowledge of mathematical
objects arises from our ability to recognize contradiction and non-contradictory sets of theorems.  FBP
entails a mathematical description for every possible empirical situation. Thus, FBP can provide an
additional account of the applicability of mathematical objects, in case the fictionalist’s account fails. 

The platonist’s central complaint about fictionalism is its denial that many mathematical claims
seem to force themselves on us, beyond their applicability to empirical science.  Gödel took the feeling of
constraint to be evidence of mathematical intuition.  “[D]espite their remoteness from sense experience,
we do have something like a perception also of the objects of set theory, as is seen from the fact that the
axioms force themselves upon us as being true.” (Gödel 1963: 483-484; see also Putnam 1994: 503,
quoting Hao Wang)

The feeling of discovering mathematical truths is not really an argument.  The fictionalist can
urge us to think of this feeling as of something else, like having discovered a logical entailment.  But it

92 Friedman actually says, “There is no doubt that it is a major contribution to our understanding
of applied mathematics” (Friedman 1982: 506), which need not be interpreted as endorsing the account.

93 Actually, on his own terms, Field does not explain application.  The representation theorems
are not available in the official, first-order version of his theory.  See Shapiro 1983: 529-530.
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adds to the amount of re-thinking that one must do to embrace fictionalism, and this coheres poorly with
Field’s claim that we are to take mathematics at face value.

The fictionalist denies that mathematical theories have a subject matter.  Consider the problem of
how to interpret conflicting consistent set theories, like ZF with the axiom of choice and ZF with its
negation.  The indispensabilist allows only one universe of sets, that which applies in science.  Either
there is a choice set for any set or there is not.

Fictionalism avoids this difficulty in much the same way that Alexander cut the Gordian knot:
there is no choice set.  “Our different set theories ‘have a different subject matter’ only in that they are
different stories.  They differ in subject matter in the way that Catch 22 and Portnoy’s Complaint differ
in subject matter; these differ in subject matter despite the fact that neither has a real subject matter at
all...[N]either is properly evaluated in terms of how well it describes a real subject matter.” (Field 1990:
207) 

The autonomy platonist may demonstrate similar largess without giving up an account of content,
accepting multiple set-theoretic universes, each with different objects, each with different theorems true
of it.  For the fictionalist, the lack of content allows us to say whatever we want.  For the platonist, there
are stakes to, say, positing multiple set-theoretic universes.  There are constraints on theory-building in
mathematics that prevent us from saying whatever we might want.  Such constraints lead us to autonomy
platonism.

§3: Mathematics as Logic?
Autonomy platonism is not the only alternative to fictionalism or indispensability platonism,

though it is the one I pursue in the remainder of this book.  One set of options are reinterpretive, mainly
taking mathematical terms to be oblique references to modal properties.  Such proposals are essentially
fictionalist, denying the existence of mathematical objects and changing the subject of mathematical
sentences.  Modal accounts make little epistemic headway, trading knowledge of mathematical objects
for knowledge of possibility, a perhaps-equally intractable problem.  I will not consider modal
interpretations since I believe, and will argue, that an autonomy platonist epistemology is even less
contentious than an epistemology of modal properties.

More promisingly, some philosophers look to minimize the existential content of mathematics by
taking mathematical knowledge to be, at root, logical knowledge.  Attempts to take mathematical theories
as complex logical theories trace back to Frege’s logicism.  Frege believed that by assuming some modest
logical principles and developing a gap-free formal system of inference, he could both put arithmetic on a
firm ground and solve any epistemological problems facing it.  Unfortunately for Frege’s project, the
modest logical principles, in the guise of his Rule V (a version of Cantor’s unrestricted axiom of
comprehension), turned out to be inconsistent, as Russell showed.  Russell’s paradox deterred Frege from
completing his work by showing that his purportedly logical fundamental principles had substantial
mathematical content.  Nevertheless, Whitehead and Russell persisted, helping to develop and apply
axiomatic set theory.  Contemporary work on neo-Fregean philosophies of mathematics have continued
to refine and circumscribe the content required to ground axiomatic set theory and higher-level
mathematics.94

I want to make three quick comments about neo-logicist projects.  First, the technical

94 Work by Crispin Wright, Bob Hale, and Richard Heck have showed decisively that while
Frege’s Rule V leads to paradox, the majority of Frege’s project can be carried out by just assuming what
is variously and somewhat misleadingly known as Hume’s principle or just HP.  That assumption is
essentially the claim that cardinality is to be understood in terms of one-one functions.  No one, though,
claims that Hume’s principle is a simple logical principle.
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developments of such projects have succeeded in casting important light on the foundations of
mathematics.  Second, even a quick glance at that work dashes any hopes of solving the epistemological
problems facing platonistic mathematics by appealing to an uncontentious logic.  Last, as Frege knew,
grounding mathematical knowledge in logical knowledge does not eliminate the problem of explaining
our knowledge of mathematical objects.  This problem appears in the work of Frege and the neo-logicists
as (or perhaps as a facet of) the Caesar problem.  Mathematical objects exist in what Frege called a third
realm: they are neither concrete objects nor mental objects.  Neo-logicists should welcome an autonomy
platonistic account of our knowledge of mathematical objects, since it could help respond to charges that
knowledge of the relevant logical principles does nothing to explain how we could have knowledge of
the abstract objects of mathematics.

Other attempts to ground our knowledge of mathematics in our knowledge of mathematics are
more closely related to Field’s work, an aspect of which is sometimes ascribed to Hilbert as well.  On this
view, mathematical knowledge is knowledge of which theorems follow from which others. 

The unfortunate consequences of the indispensability argument do not extend to our knowledge
of many logical theories, especially those, like standard first-order logic, which make no existence
claims.  Even weak logical theories, though, afford us some tools which might ordinarily be thought to
require mathematics; one might make some headway in accounting for mathematical knowledge by
examining logical knowledge.  We need logic to govern inferences anyway.

The extent of the mathematics attainable from logic depends on which logic one takes as
canonical.  Propositional logic provides few mathematical resources.  From first-order logic, if we
include an identity predicate and its standard governing axioms, we can generate logical dopplegangers
for finite natural numbers.  Specifically, we can generate finite cardinality quantifiers, allowing us to
distinguish the sizes of different finite collections.  We can say that there are three, four, or seventeen
thousand blue vases in the showroom, or planets in the galaxy.  

Other resources for those attempting to avoid a truly platonistic ontology include concrete
templates.  Templates are and represent concrete patterns and can perform practical geometric tasks by
serving as blueprints, allowing us to measure and design spaces.95  But concrete templates and cardinality
quantifiers are insufficient if scientific theory requires even the full theory of natural numbers, let alone
analysis.  We can not represent continuity or infinite sizes.  

With stronger logic, one can accomplish more of the tasks for which mathematics is ordinarily
used in science.  George Boolos and Hartry Field, for example, have explored a logic of plural
quantification, one which is equivalent to a mereological theory, to handle collections of space-time
points and regions.96  Stewart Shapiro recommends second-order logic, which yields rudimentary set
theory.  With any logic which generates some sort of set theory, one can construct objects which function
like the natural numbers, and other mathematical objects.

Still, the claim that we can avoid mathematical commitments on the basis of a strong logic rings
hollow.  Field’s logic was criticized for being too mathematical; mereological axioms entail theorems too
substantial to be called logical.97  We can see the objects generated by mereological theorems and
second-order logic as replacements for sets and other mathematical objects only because we already
possess profound information about mathematics.  We take ‘{{ö}}’ as a two, for example, on the basis of

95 See Resnik 1997: 226 ff.

96 See Field 1980: Chapter 9; and Field 1989: Chapter 3.

97 See Malament 1982, Shapiro 1983, and Field 1984a: 141.  More generally, Quine 1986
famously derided second-order logic as set theory in sheep’s clothing.
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a translation between the objects intended as the models of the Peano axioms and a set-theoretic
sequence.  We can only take sets to serve the functions of numbers if they provably perform all the tasks
that numbers do.  Similarly, we can only take the objects of second-order logic as sets if they do the work
of sets.  Our prior knowledge of sets, or of numbers, is a constraint on the claim that we can substitute
logical theories for mathematical ones.  Anyone who attempts to restrict her ontology by adopting
stronger logics would disingenuously pretend to eliminate mathematics while using mathematical
knowledge as a constraint on the adoption of a logic and the consequent construction of scientific theory.

Focusing on the logic used in science is instructive, though, for it shows how the appeal to
scientific theory in even an ideal indispensability argument is insufficient to generate mathematical
ontology.  Consider a giant book in which is inscribed the spatio-temporal position of every object in the
universe at every moment.  This could be done with no mathematics, since we can use the dopplegangers
constructible out of first-order logic.  If one wanted to predict the position of any object at any time, say,
or the direction of its motion, all you would have to do is look it up.  Such a book would perform just
about all the functions of scientific theory that we could want.  It would be perfectly precise and perfectly
predictive, if inelegant.  It would need no mathematics beyond that generated by first-order logic.  If our
knowledge of mathematics truly depended on its indispensable utility for empirical science, we seem
unable to justify any mathematical knowledge at all.

Furthermore, accounts of our knowledge of logic typically appeal to mathematical theories in
their metalanguages.  We use set theory to model first-order logic and any logic strong enough to do the
work for science.  So, even appeals to an ontologically uncontroversial logic seem to entail commitments
to mathematics.

The mathematical platonist should resist reliance on logical substitutes for mathematics.  Any
strong logic hides mathematical claims and requires mathematics for its interpretation.  Scientists need
more than first-order logical machinery, whether in the guise of mereological axioms which govern the
structure of a substantivalist space-time or in the guise of traditional mathematical theories.  And
mathematicians explore universes which far outstrip the needs of scientific theories, in any case.

We have seen reasons to prefer autonomy platonism, to indispensability platonism, to
fictionalism, to logicism and related projects.  Much of the dialectic of this chapter and the foregoing
ones, though, is predicated on an assumption of an acceptable epistemology for abstract objects.  The
challenge to provide an epistemology for abstract objects, one consistent with our epistemology for
concrete and ordinary objects and one which is neither spooky nor mystical, is long standing and has
appeared intractable.  It is, of course, the main motivation for all views of mathematics other than
platonism.  The Benacerraf-Field problem I discussed in Chapter One is merely the contemporary locus
for the eternal debate.

And yet I believe that the challenge is not so difficult to meet.  Ironically, one key to meeting it
appears in Quine’s work in his view of ontology as the result of theory construction and modeling, i.e.
positing. 

In the next chapter, I describe two versions of autonomy platonism.  The first is Mark Balaguer’s
FBP.  The second is my preferred version. 



Chapter Nine: Two Versions of Autonomy Platonism

Any justificatory account of mathematical beliefs which is both platonistic and does not appeal
to the uses of mathematics in science for that justification is a version of autonomy platonism.  Thus
there are varieties of autonomy platonism.  Plato, Descartes, Leibniz, and Gödel can all be naturally
interpreted as autonomy platonists.  Locke and Hume share some aspects of the autonomy platonist’s
view that mathematical claims retain their truth independent of their uses in science (or, less
anachronistically, in accounts of our sense experiences).  For the present, we can divide autonomy
platonisms into two categories: those that rely on a capacity of mathematical intuition as part of their
account of our knowledge of mathematics and those that do not.  Among the former is the autonomy
platonism of Jerrold Katz; among the latter is Mark Balaguer’s FBP.

The version of autonomy platonism which I believe is most defensible relies on mathematical
intuition.  This version best captures commonsense beliefs about mathematics, best represents a tutored
understanding of the relationship between mathematics and science, and best captures the ways in which
mathematics is practiced.  Because of its reliance on mathematical intuition, sometimes seen as a
mystical pseudo-capacity, intuition-based autonomy platonism is controversial.  In this chapter, I first
discuss some problems with Balaguer’s non-intuition based view.  Then, I describe my favored account
and defend it against charges that intuition is mysterious.  This defense involves invoking some circular
reasoning.  In the next chapter, I defend this kind of circular reasoning more generally.

§1: Plenitudinous Platonism
Balaguer’s plenitudinous platonism, or FBP, claims that every consistent set of mathematical

axioms truly describes a universe of mathematical objects.98  Certain mathematical questions, like the
question of the size of the continuum, have no determined answer.  Some such questions, like whether
Goldbach’s conjecture is true, seem clearly to have a correct answer; either there is a large even number
which can not be written as the sum of two primes or there is not.  Indeed, most mathematicians are
convinced that Goldbach’s conjecture is true even in the absence of a deductive proof of its truth.

Other mathematical questions elude consensus.  Consider the axiom of projective determinacy,
which says that all projective subsets of the set of functions from ù (the set of all natural numbers) to ù
are determined.  (The projective sets are obtainable from Borel sets by repeatedly taking complements
and images.)  Projective determinacy follows from the existence of infinitely many Woodin cardinals and
from some other large cardinal axioms.  If the axiom is true, then many open questions about projective
sets which are left undecided by ZFC are settled.99  The elegance and strength of such results motivate
some set theorists to accept the axiom of projective determinacy.  But the axioms of ZFC are intuitively
pleasing to many mathematicians while large cardinal axioms are far less universally lauded.  Moreover,
one might believe that at least some of the questions left unsettled by ZFC are really open, and not just
because the axioms of ZFC are too weak.  Perhaps some apparently well-formed questions in
mathematics are, unlike Goldbach’s conjecture, neither true nor false.  Also, some large cardinal axioms,
in particular ones which yield the too-strong axiom of determinacy, are inconsistent with ZFC, which is
good evidence against them.  How large is the set theoretic universe?  The answer, if there is a unique
answer, eludes us.

A related and better-known case concerns the size of the continuum.  Gödel famously claimed
that the continuum has a unique size.  Developments in recent decades, especially Cohen’s model-
theoretic proof of the independence of the continuum hypothesis from the standard axioms of set theory,

98 See Balaguer 1995 and Balaguer 1998: Chapters 3-4.  Balaguer originally called his position
full blooded platonism, hence the acronym.

99 See Martin and Steel 1989: 72.  See also the useful discussion in Maddy 1988b: §VI.
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have undermined Gödel’s claim.  Various different and conflicting claims about the size of the
continuum are all consistent with standard set theory.  One could adopt stronger axioms (e.g. the
existence of Woodin cardinals) which settle the question univocally.  But, it has seemed to some set
theorists that no unique answer is yet warranted.

FBP is largely motivated by and accommodates the view, held by some mathematicians and
philosophers in response to the openness of such questions as the size of the continuum and the truth of
the axiom of projective determinacy, that there is no fact of the matter about certain mathematical
questions.  On FBP, ZF + CH and ZF + not-CH each truly describe real set-theoretic universes, despite
their conflicting claims.  Our ignorance of the size of the continuum or the truth of the axiom of
projective determinacy is, on this view, no accident.  It is, in particular, not the consequence of a mere
lack of evidence.  It is the result of there being many sizes of the continuum and there being no fact of the
matter whether the axiom of projective determinacy is true.

Interestingly, plenitudinous platonism is inspired by, and closely related to, Field’s fictionalism. 
On Field’s view, “[M]athematicians are free to search out interesting axioms, explore their consistency
and their consequences, find more beauty in some than in others, choose certain sets of axioms for certain
purposes and other conflicting sets for other purposes, and so forth; and they can dismiss questions about
which axiom sets are true as bad philosophy” (Field 1998a: 320.)

The proponent of FBP accepts all of these claims except the last.  While Field thinks that the
mathematician is free because all his theories are false or vacuous, the proponent of FBP believes that the
mathematician is free since all his theories are true.  In either case, truth is no constraint on our
estimation of mathematical theories.  The fictionalist says that statements of the different sizes of the
continuum do not conflict because none of them are true.  The plenitudinous platonist says that there are
diverse set-theoretic universes.

Both the proponent of FBP and the fictionalist, then, make claims akin to Resnik’s Euclidean
rescues.  Just as there can be several equally-good geometrical theories, there can be several equally-good
set-theoretic universes, each with their own defining set of axioms.  The fact that these geometries or set
theories are inconsistent when taken together is, for Field and Balaguer, no evidence against any of them
either  individually or taken together.  We need not choose among conflicting theories because their
relative inconsistency is no evidence against them.

FBP and fictionalism thus recommend distinctly different attitudes from traditional platonism
and standard mathematical methods toward open questions.  Mathematicians are rarely deterred from
seeking a solution to an open question by philosophical speculation that the question may be open in
principle.  The traditional platonist, like Gödel, approaches such Euclidean rescues in mathematics
warily, preferring to find a unique answer.  Open mathematical questions may seem unanswerable only to
be later acclaimed true or false.  Some of the questions which motivate FBP will provably require
adjustments to well-entrenched and intuitive axioms.  But axioms have been adopted and ceded before. 
The traditional platonist, seeking unique answers to open questions, may see FBP as precipitously
abandoning well-formed questions.

Let’s put aside fictionalism to focus on the autonomy platonistic view.  Insofar as FBP
countenances the existence of mathematical objects and the truth of many mathematical claims, it is a
platonistic view.  FBP is a variety of autonomy platonism because only the consistency of the axioms,
and not their applications in science, determines whether they are acceptable, whether they truly describe
a mathematical structure or universe.  It is not an indispensabilist view and does not suffer all of the
unfortunate consequences as a result of being an indispensabilist view.  Still, I have two objections to
FBP.  

My first worry about FBP is that it generates too many objects in too many true theories.  By
claiming that any consistent set of mathematical axioms truly describes a mathematical universe, it
portrays questions which are really open as closed.  FBP provides no satisfactory account of our focus on
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preferred theories and interpretations, as on the standard model of the Peano postulates.  Every model of
the axioms, on FBP, is equally acceptable.  Focus on the standard model is explained by the proponent of
FBP sociologically and by its ubiquity.  As an autonomy platonist, Balaguer does not believe that the
applicability of a mathematical theory grounds its truth.  It merely explains why we tend to be interested
in some theories rather than others.  Balaguer claims that our interest in one set theoretic universe or
other is no evidence of its mathematical superiority.

But mathematicians not only focus on the standard model as a mere matter of sociological
pressures.  They also believe it to be the correct model.  Not every consistent mathematical theory is a
good mathematical theory.  There are gradations among different consistent theories, differences which
derive from their mathematical properties.  Some theories are more elegant, more unifying, or more
predictive of further mathematical results than others.  Consistency is a minimal requirement for
mathematical goodness, but it is not a sufficient condition.

FBP only requires apprehension of consistency as a guide to the truth of a mathematical theory. 
This aspect of FBP makes it minimally problematic epistemically, since we obviously have a capacity to
derive and recognize contradictions.  If consistency were a sufficient condition for mathematical truth,
then FBP would be a sufficient version of autonomy platonism.  But I believe that FBP is an insufficient
account of our views of mathematics.  It would be nice to think that we need no capacity other than an
ability to recognize contradictions to ground our estimations of various mathematical theories.  Our
mathematical practice belies this fantasy.  Justifying our interest in a standard model, if it is not to rest on
application, will require appeal to some capacity to distinguish between consistent but untrue
mathematical theories and consistent theories which are also true.  In describing this capacity, I will
appeal to a version mathematical intuition.  FBP avoids invoking any kind of contentious intuition.  But it
provides an unsatisfying answer to the hard but important question of why we privilege certain systems
on mathematical grounds. 

§2: FBP and Necessity
My second objection to FBP concerns its denial of the necessity of mathematical claims.  For the

indispensabilist, mathematical objects exist as contingently as the physical world; this Unfortunate
Consequence pushes us toward autonomy platonism.  But if we adopt FBP as our autonomy platonism,
then, according to Balaguer, we still suffer from Modal Uniformity: mathematical objects do not exist
necessarily; mathematical claims are true only in those worlds in which mathematical objects exist and
those worlds are a proper subset of the possible worlds.

Balaguer defends the contingent existence of mathematical objects.  He argues that some
platonists, like Jerrold Katz and David Lewis, needlessly invoke necessity to ground their epistemology. 
Such philosophers argue that since mathematical objects exist necessarily, there is no need to account for
the conditions of their existence.  But appeals to necessity are both otiose for Balaguer and ungrounded,
in part because of the obscurity of the concept.

There problem here is that we just don’t have any well-motivated account of what metaphysical
necessity consists in.  Now, I suppose that Katz-Lewis platonists might be able to cook up an
intuitively pleasing definition that clearly entails that the existence claims of mathematics - and,
indeed, all purely mathematical truths - are metaphysically necessary.  If they could do this, then
their claim that mathematical truths are necessary would be innocuous after all.  But (a)...the
claim would still be epistemologically useless, and (b) it seems highly unlikely (to me, anyway)
that Katz-Lewis platonists could really produce an adequate definition of metaphysical necessity
It just doesn't seem to me that there is any interesting sense in which ‘There exists an empty set’
is necessary but ‘There exists a purple hula hoop’ is not (Balaguer 1998: 44-45; see also pp 166
et seq.).
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In contrast, there are important and interesting differences in the modal status of the two claims. 
That there is a purple hula hoop depends on facts about the world over which we have some control.  We
have some interactions in events that result in the creation of hula hoops and we can put together a plan
for the eradication of hula hoops.  We can explain what contingent facts are contingent on.  But such
explanations are absent in the mathematical and logical cases: we can’t say anything about what
differences could yield the existence or non-existence of mathematical objects.  Nothing we do or could
do has any effects on the existence or non-existence of mathematical objects.

I do not know what would constitute the definition of metaphysical necessity Balaguer demands
beyond the (metaphorical or literal) characterization of necessity as truth in all possible worlds.  Balaguer
rightly argues that mathematical necessity must be distinct from logical necessity if we take a standardly
narrow view of logic.  Mathematical truths might be conceptually necessary, depending on one’s view of
concepts.  But the account in terms of possible worlds seems clear enough: mathematical objects exist in
all possible worlds; true mathematical claims are true in all possible worlds and false ones are false in all
possible worlds.  Indeed, it is this claim that Balaguer denies by claiming that mathematical claims are
not necessary because nominalistic worlds, worlds without mathematical objects, are possible.

Balaguer’s claim (a), that it is epistemologically useless to claim that mathematical claims are
necessary, might be right, though it is not far from Balaguer’s own claim, perhaps indistinguishable from
it.  FBP says that every consistent mathematical theory truly describes a mathematical universe.  This is
very close to saying that the theorems of mathematics, when true, are necessarily true, and that
mathematical objects exist necessarily.  Moreover, the necessity of mathematics could help the FBPist
explain why consistency entails truth.  So the claim of necessity can be useful.

There are at least two reasons to want an account of mathematics on which mathematical objects
exist necessarily.  Besides the first, the Katz-Lewis view which uses necessity to ground an
epistemology, one might merely wish to account for the commonsense belief that there is a difference
between what might have been different and what could not have been different.  One of the goals of the
autonomy platonist is to accommodate that traditional view.  If one believes that mathematical objects do
not exist necessarily, then FBP might be preferable to a necessitarian account.  But I believe that the
traditional view is, on the whole, more satisfying, as I hope to show.

Balaguer agrees that the claim ‘if there are numbers, then three is prime’ is necessary.  His main
focus is on the claim that mathematical objects exist necessarily.  For Balaguer, nothing exists of
necessity and there could have been nothing.

(a) [C]orresponding to every way that the physical world could be set up, there are two different
possible worlds, one containing abstract objects and the other not; and (b) if we were “presented”
with a possible world, we wouldn’t know whether it was a world containing abstract objects or a
physically identical world without abstract objects, and what’s more, we wouldn’t have the
foggiest idea what we could do in order to figure this out. The reason for this, if I am right, is that
for any such pair of physically identical worlds, we don’t know what the difference between
them really amounts to (Balaguer 1998: 166)100

100 Balaguer’s view might be clearer here: “It’s at least possible that nominalism is true.  If you
think nominalism isn’t even possible, then you owe an explanation of WHY it’s not possible.  And absent
such an explanation, it looks like the claim that math is necessary is just an unmotivated claim to the
effect that it’s just a brute fact about the space of possible worlds that there’s no possible world where it
seems that there should be one” (Personal correspondence, 5/16/2012).
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Again, Balaguer FBP is close to Field’s fictionalism.  For Field, mathematical objects do not
exist, but their existence is (logically) possible.

From the necessitarian point of view, it is difficult to see what kind of explanation for the
necessity of mathematical claims one could provide.  Causal explanations are out.  Abstract objects are
not governed by the laws of physics and so can have no explanations of the sort we provide for
contingent non-existence claims.  Purely mathematical explanations generally yield conditional claims:
on the basis of certain axioms or assumptions, certain other theorems follow.  We can explain why it is
impossible for there to be a set such that its power set is the same size as itself, for example, only on the
assumption of the existence of sets.  It seems as if this is just the kind of question that doesn’t have a
good answer, like ‘Why is there something rather than nothing?’.  

But either mathematical objects exist in all (or no) possible worlds or there are no good
arguments for either their existence or their non-existence.  In other words, if necessitarianism is false,
then there are no reliable arguments for either platonism or fictionalism.  To see this, let’s imagine, with
Balaguer, that there are some worlds in which mathematical objects exist and others in which they do
not.  Consider our world and another just like ours and imagine that in one of these two worlds there are
mathematical objects while the other is nominalistic; otherwise they are identical.  By symmetry, we can
imagine that we are in the nominalistic world.  In our world, people who believe that there are perfect
numbers believe something false.  In the other world, they (or their counterparts) believe something true. 

Persons in both worlds have mathematical beliefs, ex hypothesi, but they don’t know whether to
be fictionalists or platonists.  We and our dopplegangers in the platonistic world have exactly the same
reasons on both sides; any evidence is the same in both worlds.  Since there’s no difference in the
concrete aspects of the two worlds and we are, let’s presume, exhaustively concrete beings, any way of
coming to know which world we are in is present in both worlds.  So any argument for platonism or
fictionalism is unreliable.  Even if it were sound in our world, the same argument could be asserted in the
doppleganger world; in at least one world it will be unsound.  

Conversely, let’s imagine that there are reliable arguments for either a contingent platonism like
FBP or a contingent fictionalism like Field’s.  Such an argument would hold in any possible world, since
the evidence in any world would be the same.  And since the argument is reliable, we should presume its
soundness in any world.  If it is a platonist argument, then we should conclude platonism in any world.  If
it’s a fictionalist argument, then we should conclude fictionalism at any world.  So either there are no
worlds in which mathematical objects do not exist or there are no worlds in which they do exist,
contradicting our assumption.  So there are no reliable arguments for contingent platonism or contingent
fictionalism.

Thus every argument for either platonism or fictionalism in a universe in which there are some
worlds with mathematical objects and some worlds which lack them will be unreliable.  Even if an
argument is sound in a particular world (i.e. it concludes fictionalism in a nominalistic world or it
concludes platonism in a platonistic world), there will be other worlds in which the exact same argument
can be asserted and in which it is unsound.

I’ve assumed, in both scenarios, that there are some reliable arguments for either platonism or
fictionalism.  Maybe there aren’t any.  But then Balaguer’s request for an argument for the necessity of
mathematical claims is unanswerable.  In contrast, I believe that there are good arguments for a view of
mathematics which includes the necessary existence of mathematical objects.  Such arguments will show
that our mathematical methods require appeals to intuitions and these intuitions are best captured by
axiomatizations which include existential mathematical claims.  It’s a long-ish story, and indirect, but it’s
the best one can do and I will attempt to do it in the rest of this book.

FBP attempts to account for mathematical knowledge without appeals to mathematical intuition
on the basis of merely our pre-theoretic apprehension of consistency.  The autonomy platonist who
wishes to explain our focus on the standard model will appeal to more contentious epistemic capacities. 
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Some philosophers are skeptical of the prospects for such a view.

One might adopt the ontological position that there are multiple ‘universes of sets’ and hold that
nevertheless we have somehow mentally singled out one such universe of sets, even though
anything we say that is true of it will be true of many others as well.  But since it is totally
obscure how we could have mentally singled out one such universe, I take it that this is not an
option any plenitudinous platonist would want to pursue (Field 1998b: 335.)

Contra Field, this is exactly the position I believe to be worth pursuing.  The purportedly obscure
mental process to which Field refers is mathematical intuition.  Any account of our knowledge of science
must refer to our ability to reason about our commonsense beliefs.  This ability to reason can not
plausibly be limited to our knowledge of formal logic, since we must have some basis on which to
develop such theories.  One aspect of the evidence we have for science, for mathematics, and for logical
theories must be our ability to reason.  This ability is where the autonomy platonist must look for
accounts of mathematical intuition.

§3: Intuition-Based Autonomy Platonism
It is time, finally, to describe the intuition-based epistemology for autonomy platonism I have

been promising.  Two constraints on the account are, first, that it be consistent with a non-mystical, non-
spooky view of humans and their belief-gathering processes and, second, that it plausibly fit with our
actual practices.  I’ll start with a brief sketch, from Mark McEvoy, of an autonomy platonist view
consistent with the one which I support.

Our basic mathematical concepts arise from causal interaction with physical objects that
approximate mathematical objects (e.g., approximately square objects, or n-membered sets of
physical objects). The elementary concepts so obtained are then available for examination by
reason which can establish some elementary truths involving those concepts (e.g., elementary
arithmetical and geometrical truths). The development of proof and of axiomatization further
extends our ability to reason about these concepts. Some time after we have begun to establish
mathematical truths, we notice that propositions involving mathematical concepts are not
precisely true of anything in the empirical world. This, once we begin to see the problems faced
by non-platonist views in attempting to account for mathematical truth (and, more generally, for
the metaphysics of mathematics), leads us to conclude that if mathematical truths are to be true at
all, they must be true of something else. This is how we end up with mathematical knowledge of
entities that (we theorize) are abstract and independent of us. Our knowledge is a priori, despite
the empirical origins of our elementary mathematical concepts, because we establish
mathematical truths solely by reason (McEvoy 2012: fn 6).

Note that on McEvoy’s sketch, our belief-gathering processes are utterly uncontentious.  We
have sense experiences of ordinary objects.  These experiences are not taken to be infallible or
necessarily truth-conducive.  Neither are they immediate or unmediated by other beliefs or theories. 
They are just particular experiences of any sort.  But, combined with our ability to reason, they lead us to
particular mathematical beliefs.  We reflect on our experiences and our particular mathematical beliefs,
developing, eventually, full-blown mathematical theories.  Our construction of these theories is mediated
by both considerations of theory construction and by our particular mathematical beliefs.  These theories
have as their subjects abstract objects.

I take McEvoy’s sketch to be perfectly natural, of both the development and the justification of
our mathematical beliefs.  To develop it into a full-blown epistemology for autonomy platonism, though,
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I must perform a couple of tasks.  I need to say more about the nature of reflection or, as I will call it,
mathematical intuition and reasoning.  Briefly, the role of intuition is to provide some fallible but prima
facie acceptable mathematical beliefs.  I also need to say more about the ways in which we reason from
simple mathematical claims to substantial mathematical theories.  Insofar as I take this process to be just
the ordinary practice of mathematics, there is not too much to say about it.  Historians and sociologists of
mathematics can provide a better account of the details than I will.  But, again briefly, the process is one
of seeking reflective equilibrium between our intuitive mathematical beliefs and our systematizations of
those beliefs in the forms of broad and abstract mathematical theories, guided throughout by our ability
to recognize valid inferences and consistency.  Lastly, I will say something simple about why knowledge
of mathematical objects, long seen as troubling for mathematical epistemology, is not really a problem. 
Here, I will rely on Quine’s view of ontology as the result of positing, of modeling our best theories.

The remainder of this chapter will be devoted to these three tasks.  In the next chapter, I will
reflect on the nature of my account, especially responding to a concern about its structure.

§4: Mathematical Intuition
Intuition-based autonomy platonism invokes an a priori faculty of mathematical intuition.  I take

intuition to be a belief-forming process akin to sense experience but one which yields beliefs in
propositions whose content is unavailable to our senses.  A full account of this faculty should include a
detailed examination of all our belief-forming processes and a partition of these into a priori and
empirical classes.  I will not provide that complete account here.  I will characterize mathematical
intuition in order to show how it can function in an epistemology for autonomy platonism, how it relates
to philosophical reasoning generally, and how it avoids some criticisms of other accounts of intuition and
why we should take it to be reliable if fallible.

§4.1: A Fallibilist Account of Mathematical Intuition
I start my account of mathematical intuition with a brief examination its role in the work of

Jerrold Katz.  I will depart in significant ways from Katz’s account.  But I agree with Katz, and McEvoy,
that mathematical intuition is connected with mathematical reasoning generally.  For Katz, intuition is
our capacity to grasp simple mathematical truths, ones too basic to be derived.  

We can say that reason is rationality in application to deductive structures and intuition is the
same faculty in application to elements of such structures.  We can think of intuition as reason in
the structurally degenerate case (Katz 1990: 381).

This far, I follow Katz: a mathematical intuition is an experience or recognition which can yield
a belief.  When I have a sense experience, I might form a belief based on that experience.  For example,
on seeing an apple in my hand I may form a belief that there is an apple in my hand.  I might, of course,
not form that belief.  I might, say, be considering whether I were in a dream state.  Similarly, when I have
an intuition of a basic mathematical fact, say that seven and five equal twelve, that will ordinarily lead to
or confirm my belief that seven and five are twelve.  But, in skeptical cases, I might withhold my belief. 
For example, I might wonder whether arithmetical claims are merely fictional.  I can have an intuition
that a mathematical claim is false, as when I think about an unrestricted axiom of comprehension given a
background set of beliefs about how it leads to paradox.

Mathematical intuition, as I use the term, can lead us to recognize a mathematical proposition as
true or false.  More than that, it mediates our recognition of the modal character of the proposition.  We
have an intuition not only that a sum holds, say, but that it must.  This recognition contributes to the
phenomenal content of an intuition.  It feels as if the content of a particular intuition has modal character. 
When I see an apple and develop a belief based on my sense experience that it is red and ripe, I recognize
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that that same apple could have been green and may not be ripe.  But when I think about the sum of seven
and five, I know that it can only be twelve.  This modal character of my mathematical beliefs arises
directly from the nature of the objects of those beliefs, both independent of sense experience and
immutable.

Reflecting both on the content and modal character of our mathematical beliefs, it is natural to
distinguish the method by which I arrive at those beliefs, which I am calling intuition, and the process of
my justification of those beliefs, from the methods and justifications of my ordinary beliefs, like those
about apples.  This is just the distinction between a priori methods of acquiring beliefs and empirical
ones.  We can see that mathematical intuition is an a priori method of belief formation just by
considering the content and modal character of the beliefs we acquire by intuition.

In contrast to the way that ‘a priori’ has often and unfortunately been understood, my claim that
mathematical intuition is a priori should not be taken as ensuring that the content of the beliefs acquired
by intuition are free from error.  Mathematical claims ordinarily will be necessarily true, if true, and
necessarily false, if false.  But we are lamentably constructed so that we sometimes take false claims for
true ones.  My claim that mathematical intuition is a priori is a recognition of the distinctness of the
processes of acquisition and justification of mathematical beliefs from the processes of our acquisition
and justification of beliefs about ordinary objects.  It is not a guarantor of security for those beliefs.

Some philosophers believe that appeals to mathematical intuition must carry with them a
commitment to the truth of any belief acquired intuitively.101  Such a view might be held because it seems
to follow from the assumption, which I hold, that many mathematical beliefs, however acquired, are
necessarily true if they are true.  But the inference is invalid.  The modality of mathematical claims is
independent of the epistemic status of our beliefs about those claims.  Again, a mathematical claim is
necessarily true if true; but we might be wrong about it.

In empirical cases, we have mechanisms to correct our false beliefs.  Among those mechanisms
are both sense perception and considerations of theory construction.  We might cede the belief that there
is a pool of water in the distance both by approaching the mirage and by thinking more broadly about
theories of light and reflection.  We might cede a mathematical belief both in response to contrary
intuitions and on the basis of broader theoretical considerations.  In both empirical and mathematical
domains, we check our particular beliefs with further particular beliefs and systemic ones.

Despite their abstract content, there are ways in which we can acquire mathematical beliefs that
are not a priori.  I can read about the proof of a new theorem without following the proof, so that I am
acquiring belief by testimony rather than mathematical intuition.  As children, we learn lots of
mathematical beliefs by testimony or just by looking at lists of mathematical facts like multiplication
tables.  These are empirical methods of belief acquisition and they can not, by themselves, justify those
beliefs.  It is our grasping of these mathematical facts, our understanding them and their modal character
and their content, which gives them their a priori, if fallible, nature.102

101 Mulnix seems to hold this view: “[R]ational intuition is a non-inferential belief-forming
process where the entertaining of propositions or certain contemplations result in true beliefs, as well as
one being convinced of the truth of these propositions” (Mulnix 2008: 717-8).  Katz waffles, sometimes
taking intuition to be an immediate source of knowledge (see Katz 1998: 43) but sometimes recognizing
the fallibility of intuition (see Katz 1998: 44).

102 “[E]ven if one’s mathematical beliefs are initially produced by a causal process, this does not
render mathematical knowledge a posteriori” (McEvoy 2004: 437).  Leibniz’s view is precedental:
“Although the senses are necessary for all our actual knowledge, they are not sufficient to provide it all,
since they never give us anything but instances, that is particular or singular truths.  But however many
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§4.2: Mathematical Intuition and Philosophical Intuition
Mathematical intuition is related to what is often called philosophical intuition.  Indeed, given

the modal character of many beliefs which arise from philosophical intuition, the processes are quite
similar.  Philosophical intuition, like mathematical intuition, is often derided, but more often defended
than mathematical intuition.  Since I am making claims similar to many of the claims about philosophical
intuition, it will be worth a brief survey of some recent relevant work.

Where scientific evidence is often experimental and may be obtained by observation, many
philosophical and mathematical claims are counterfactual and so can not be acquired empirically.  Ernest
Sosa defines intuition to show both its connection to belief and its distance from empirical observation.

At t, it is intuitive to S that p iff (a) if at t S were merely to understand fully enough the
proposition that p (absent relevant perception, introspection, and reasoning), then S would
believe that p; (b) at t, S does understand the proposition that p; and (c) the proposition that p is
abstract (Sosa 1998: 259).

Clause a in Sosa’s definition captures the immediacy and simplicity of an intuition.  George
Bealer also takes intuition, which he calls rational intuition and which he applies to both philosophical
and mathematical cases, to be a simple grasping.  He notes that intuition has a phenomenal character
while urging that it is not a spooky faculty.

We do not mean a magical power or inner voice or special glow or any other mysterious quality. 
When you have an intuition that A, it seems to you that A... a genuine kind of conscious episode
(Bealer 1998: 207).

Bealer distinguishes intuitions from beliefs, commonsense opinions, judgments, spontaneous
inclinations to belief, the raising to consciousness of nonconscious background beliefs, guesses, hunches,
and merely linguistic intuitions.  I’ll review his arguments briefly, since they are salutary for my
discussion of mathematical intuition.

We can see the distinction between belief and intuition in mathematics when we recognize that
the set-theoretic comprehension axiom may seem true, we may have an intuition that it is true, even
though we have over-riding beliefs that show it to be false.  Indeed, we can have intuitions about both its
truth and its falsity, which again shows that our intuitions are fallible.  The claims that intuitions are
beliefs or commonsense opinions or judgments belies a category error.  They may lead to beliefs or
opinions, but they are not themselves beliefs; they are cognitive experiences.

Inclinations to believe are not episodic in the way in which intuitions, which have phenomenal
content, are.  Intuitions can not be identified with all of my nonconscious beliefs since I have many more
of them than I have intuitions, or even possible intuitions.  And they can not be identified with raising
nonconscious beliefs to consciousness because we often have intuitions which lead us to utterly new
beliefs, as when I follow a proof of a new theorem.  “If I am to have an intuition about numbers, then
above and beyond a mere inclination, something else must happen - a sui generis cognitive episode must
occur.  Inclinations to believe are simply not episodic in this way” (Bealer 1998: 209).

Intuitions are neither guesses nor hunches.  They ordinarily have different phenomenal character
and we give up our guesses and hunches when presented with contrary data.  If I guess that there are five

instances confirm a general truth, they do not suffice to establish its universal necessity; for it does not
follow that what has happened will always happen in the same way” (Leibniz, New Essays on Human
Understanding, 49).
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coins in your pocket, and you pull out six, I cede my guess.  But if it seems to me that there are five coins
in your pocket, and you pull out six, I can still hold that it seemed to me that there were five even though
that seeming was not accurate.  Guesses are often just wrong and need no account; intuitions are linked
to seeming, not to guessing.

Rational or mathematical intuitions are much closer to linguistic intuitions, like the intuition of
the grammaticality of a sentence of natural language.  Still, it is not the case that all rational intuitions are
linguistic ones.  Linguistic intuitions regard words of a particular language while rational intuitions, like
that ‘if P then not-not-P’, hold for any language.

So I follow Bealer in characterizing mathematical intuition as a seeming, an experience, one
which can accompany some mathematical beliefs, but does not accompany more complex ones.

It does not seem to me that 252=625; this is something I learned from calculations or a table. 
Note how this differs, phenomenologically, from what happens when one has an intuition.  After
a moment’s reflection on the question, it just seems to you that, if P or Q, then it is not the case
that both not P and not Q.  Likewise, upon considering [the Gettier-style case of a person
mistaking poodles for sheep] it just seems to you that the person in the example would not know
that there is a sheep in the pasture.  Nothing comparable happens in the case of the proposition
that 252=625 (Bealer 1998: 210-1).

Again similarly, Bealer acknowledges the modal character of such intuitions.  “When we have a
rational intuition - say, that if P then not not P - it presents itself as necessary: it does not seem to us that
things could be otherwise; it must be that if P then not not P” (Bealer 1998: 207).

For Bealer, it seems, mathematical intuition is just rational intuition applied to mathematics, no
different at all from philosophical intuition.  Since my focus here is on intuition in mathematics, I take no
position on whether philosophical intuition is precisely mathematical intuition.  But the characteristics
which Bealer ascribes to intuition describe what I take as mathematical intuition.  

Let’s put Bealer’s account of rational intuition aside to continue to characterize mathematical
intuition in comparison with accounts of philosophical intuition.  I take it not to be, as Kant and the
mathematical intuitionists of the early twentieth century had it, a mental construction, though it is a
psychological experience with phenomenal character.  We are not creating the content of the belief about
which we have an intuition; we are grasping that content.  Still, Charles Parsons invokes a Kantian-style
intuition which shares some aspects of ordinary philosophical intuition.  He assimilates intuition with our
ordinary ability to identify types.  “At least one type of essentially mathematical intuition, of symbol- and
expression-types, is perfectly ordinary and recognized as such by ordinary language” (Parsons 1980:
155).

Again, mathematical intuition does not have a privileged epistemic position, as Jonathan Cohen
explains for philosophical intuition.

The term “intuition” here is not being used in the sense of Spinoza, Bergson, or Husserl.  It does
not describe a cognitive act that is somehow superior to sensory perception.  Nor, on the other
hand, does it refer merely to hunches that are subsequently checkable by sensory perception or
by calculation.  Nor does this kind of intuition entail introspection, since it may just be implicit
in a spoken judgment.  Its closest analogue is an intuition of grammatical well-formedness.  In
short, an intuition that p is here just an immediate and untutored inclination, without evidence or
inference, to judge that p (Cohen 1981: 318).

Some recent work in psychology concerns a concept of intuition close to the one I am describing
and makes clear that it has no privileged epistemic position.  Indeed, psychologists show that our
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intuitions can be epistemically problematic.  In psychology, intuition is often aligned with automatic
systems, in contrast to reasoning, which is aligned with analytic systems.  Some people believe that their
analytic systems, their ability to reason, override their intuitions.  Recent research has shown that our
intuitions are actually in charge most of the time.  Daniel Haybron, following work of Jonathan Haidt,
identifies the unconscious mind, associated with intuition, with an elephant and reason, or the conscious
mind, with a rider of the elephant.

The elephant dwarfs the rider, who will have a hard time getting the elephant to do anything it
doesn’t want to.  Still, one might think that the rider is basically in charge.  Yet Haidt points out
that the analytic system is a recent - and still somewhat buggy - evolutionary innovation,
appended to a basically intuitive brain that previously managed pretty well without it...  It’s not
that intuition is a tool that a rational creature often employs; it’s rather, to put it crudely, that
reason is a tool that a basically instinctual creature often employs to accomplish certain ends. 
For the most part, the intuitive system sets the agenda (Haybron 2008: 246).

The challenge to a defender of intuition as an element of mathematical epistemology is to defend
the security of mathematical beliefs with the fallibility of intuition.  The worries about intuition which
arise in cases that Haybron considers, especially weakness of will, are not present in the mathematical
case.  The nature of the content of mathematical intuitions and the ways in which our theories are both
formal and constrained by a clear and syntactic notion of consistency contribute to their better security
than our moral or prudential intuitions.

I have gone a distance afield in discussing the concepts of rational, philosophical, and
psychological intuition and I take no position on the subtle relations among them.  I intend this discussion
to be useful in identifying certain aspects of intuition across disciplines.  Intuitions are conscious
cognitive episodes in which we grasp some abstract content with modal character.  These episodes
ground some beliefs, but are not themselves beliefs.

§4.3: Unhelpful Characterizations of Mathematical Intuition
Let’s return our focus to mathematical intuition proper.  Colin Cheyne reasonably surveys five

attempts to explain mathematical intuition and argues that they are not successful.

(1) intuition as unconscious inference (inferential intuition),
(2) intuition as direct apprehension of any state of affairs (ESP intuition),
(3) intuition as part of the process of ordinary sensory perception (perceptual intuition),
(4) intuition of the truth of certain propositions (cognitive intuition),
(5) intuition as direct apprehension of platonic entities or platonic states of affairs (direct

platonic intuition) (Cheyne 1997: 114).

While Cheyne finds all five interpretations unacceptable, his dismissal of the latter two is too
quick.  Mathematical intuitions are not unconscious inferences, (1), but conscious apprehensions of a
mathematical proposition.  They are nothing like ESP, so (2) is out.  The faculty of intuition may be
related to the faculty by which we turn our sense experiences (retinal images, olfactory stimulations, etc.)
into apprehensions of individuated objects.  But since mathematical intuition is a faculty of apprehending
claims about objects which are essentially non-sensory, it can not be a faculty of sense perception, (3).

Cheyne divides direct platonic intuition (5) into two possible cases: intuition of objects, which he
calls intuition-of, and intuitions about propositions, which he calls intuitions-that.  He ascribes the belief
that we have intuition in these senses to Gödel for his well-known passages about intuition, ones which
we saw in §1.5.  Any special faculty of intuition-of, one which is supposed to parallel our sense
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perception, is properly considered mystical; I agree with Cheyne that we can dismiss this route.  Cheyne
assimilates intuition-that to the case of cognitive intuition (4).

So Cheyne’s dismissal of mathematical intuition comes down, I think, to (4), central to my
account of mathematical knowledge.  Cheyne provides no argument against the possibility of intuition as
conceptual knowledge.  Indeed, he’s fine with accounts of knowledge based on analysis of concepts.  His
worry is about the existential import that many mathematical claims carry.

The claim that platonic knowledge is conceptual knowledge is an alternative to the claim that
platonic knowledge is intuitive knowledge, a discussion of which is beyond the scope of this
paper.  An account of platonic knowledge as conceptual knowledge might include some process
of intuition, but so long as that intuition was no different than that involved in acquiring
non-platonic conceptual knowledge, then it is conceptual knowledge which is doing the
important work in such an account. The notion of a special platonic cognitive intuition is simply
ad hoc and explains nothing” (Cheyne 1997: 118).

Cheyne here attempts to elude the hard questions about intuition by contrasting conceptual and
intuitive knowledge.  Concepts, taken as contents of thoughts, are most plausibly understood as abstract
objects, just like mathematical ones.  People have their own thoughts, but they share concepts.  The
autonomy platonist who invokes intuition to explain our knowledge of mathematical objects and
propositions will naturally invoke linguistic intuitions to explain our knowledge of concepts.  The same
capacity is at stake, and nothing Cheyne says undermines the use of intuitions, in either linguistics or
mathematics, in constructing effective theories.

Cheyne’s worry, presumably, is that the defender of mathematical intuition who appeals to (4) is
somehow smuggling in some sort of spooky capacity to perceive abstracta.  That’s not a worry for my
account.  The objects of mathematics are nothing like perceived.  They are just, as I will say in §6, posits
like other objects.

Despite the breadth of application of the capacity of intuition, appeals to mathematical intuition
are widely derided and often with this concern about mystical capacities of perception.  Field pointedly
rejects appeals to intuition throughout his work.  “Someone could try to explain the reliability of these
initially plausible mathematical judgments by saying that we have a special faculty of mathematical
intuition that allows us direct access to the mathematical realm.  I take it though that this is a desperate
move...” (Field 1989a: 28.)103

Insofar as we think of intuition along the lines of Cheyne’s (2) and (3), as an extra-sensory
perception, such a move is indeed desperate.  Of course we have no such mystical ability.  Fortunately
the notion of intuition on which I am relying is not like those.  

The question which Field raises elsewhere and hints at here, of whether and to what degree our
mathematical intuitions are reliable, is a deep and excellent one.  One of the virtues of my account is that
I leave the reliability of intuition as an open question since I make no presumption that mathematical
intuition is infallible.  Some intuitions are more reliable than others just as some sense experiences are
more clear than others.  As I will describe more fully in §5, we test our fallible intuitions against our
systematizations and work toward a reflective equilibrium between our mathematical intuitions and our
mathematical theories.  In order to show that our intuitions are generally reliable, I need just need to

103 See also Field 1989a: 21, where he derides the sui generis solution to the Benacerraf puzzle
about identifying numbers with sets; Field 1982a: 66-67, on Gödel’s view, which Field misleadingly calls
indispensabilist; and Field 1985b: 190.  Compare Field’s claim with that of Frege: “We are all too ready
to invoke inner intuition, whenever we cannot produce any other ground of knowledge” (Frege 1953: 19).
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show that our best mathematical theories, the results of the process of attempting to achieve equilibrium
between our intuitions and our theories, is reliable.  That is a much less daunting challenge.

It is conceivable that our mathematical intuitions could turn out to be highly unreliable.  Since
our theories of mathematics are constructed to account for those intuitions, it is doubtful that we could
discover this fact.  We could be just deeply wrong about much of mathematics and I do not believe that
we can rule out this skeptical worry.  It is of a piece with the problem of proving the consistency of our
mathematical theories.  We can establish some relative consistency results.  For example, the Dedekind-
Peano postulates are consistent if ZFC is consistent.  But we do not have an immanent proof of the
consistency of ZFC and indeed we know that no such proof within ZFC is possible.

More likely than discover that our mathematical intuitions are highly unreliable, we will discover
that some aspects of our mathematical intuition are incorrect, some particularly intuitive claims that we
now take to be true are wrong.  Gödel thought that it was intuitive that the continuum hypothesis was
false.  Perhaps it is, but perhaps not.  Some intuitions are better than others.

For another example, consider the axiom of choice.  In its ordinary form, it is intuitively
compelling.  With the background of ZF, it is provably equivalent to the highly counter-intuitive well-
ordering theorem.  One or other intuition has to go; perhaps, even, the background theory of ZF is the
problem.  In such cases, our intuitions are of limited direct use.  We have to learn more about the
consequences of adopting Choice or not and we may have to accept that some of our intuitions are
misleading, as we adjust them upon learning the inconsistency of naive comprehension.

§4.4: Mathematical Intuition and Mysterianism
Part of the worry about autonomy platonism which makes it seem desperate to philosophers like

Field is that intuition seems to be a mysterious psychic ability.  “The naturalism driving contemporary
epistemology and cognitive psychology demands that we not settle for an account of mathematical
knowledge based on processes, such as a priori intuition, that do not seem to be capable of scientific
investigation or explanation” (Resnik 1997: 3-4.)

Resnik’s claim that a priori intuition is incapable of scientific investigation reveals a lack of
scientific ingenuity.  We can ask people about their intuitions.  We can compare reports about intuitions
and seek theories to explain interpersonal consistencies and conflicts.  We can even use standard
neuroscientific tools like fMRIs to see what people’s brains are doing when they have intuitions. 
Resnik’s derision is puzzling.

The autonomy platonist should agree with the desire to naturalize epistemology by debarring
mystical and mysterious elements.  Mathematical intuition must be compatible with a mature psychology. 
But an epistemology which includes intuition is more than merely plausible.  We reason all the time, in
mundane matters as well as mathematics, logic, and linguistics.  We can not rule out the possibility of a
scientific, naturalistic explanation of our ubiquitous ability to reason. 

Naturalism has become a dear doctrine to many philosophers as a way to avoid both mysticism
and an unsatisfying empiricism.  On the empiricism side, one is faced with the failures of logicism and
positivism to provide uncontroversial justifications of mathematical knowledge.  Few philosophers favor
a pure Millian inductive account of mathematics.

On the mysticism side, we see worries about accounts of mathematics from Plato, Descartes, and
Gödel.  Consider Putnam’s remarks about Gödel’s platonism.  “The trouble with this sort of Platonism is
that it seems flatly incompatible with the simple fact that we think with our brains, and not with
immaterial souls.  Gödel would reject this ‘simple fact’, as I just described it, as a mere naturalistic
prejudice on my part; but this seems to me to be rank medievalism on his part” (Putnam 1994: 503).

If naturalism is to do any work at all, it must forestall an autonomous mathematical epistemology
as long as autonomy platonism is seen as entailing mysticism.  Also, every one wants to avoid Kantian
psychologism, which is like mysticism in positing substantial mental structures without empirical
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evidence.  But neither motivation weighs at all against an account like the one I am presenting.
One reason why one might think that autonomy platonism requires mysticism is if one makes

unreasonable demands on what counts as a non-mystical (i.e. naturalist) mathematical epistemology.  For
example, Putnam thinks that the autonomy platonist requires a dedicated brain structure for mathematical
perception.  “We cannot envisage any kind of neural process that could even correspond to the
‘perception of a mathematical object’” (Putnam 1994: 503).  Further, Putnam writes that appeals to
intuition are, “[U]nhelpful as epistemology and unpersuasive as science.  What neural process, after all,
can be described as the perception of a mathematical object?  Why of one mathematical object rather
than another?” (Putnam 1980: 10).

Putnam’s demands for the details of neural processes which account for our apprehension of
mathematical objects is too stringent.  Any account of mathematical reasoning must be consistent with
neuroscience, but this connection may be many degrees more subtle than the discovery of a region of the
brain dedicated to mathematical perception.104  Indeed, the claim that there are neural processes which
provide mathematical perception would be part of an empirical account of mathematics, not an apriorist
one like the one I am defending.

I do not pretend to have a neuroscientific account of mathematical intuition.  But even a
professed naturalist like Putnam recognizes the utility of appeals to intuition, though he grounds them
unhelpfully in empirical science.105  The alternatives to intuition-based autonomy platonism are too
unsatisfying.  Lacking full accounts of hard neuroscientific issues like consciousness, let alone
apparently easier ones like perception, dismissing autonomy platonism is too hasty, considering both the
robustness of pure mathematics, the need for intuition to account for it, and the bare fact that intuition is
one of the ordinary tools in the mathematician’s kit.

§4.5: The Unsurprising Reliability of Mathematical Intuition
Part of what leads to claims of mysterianism against the proponent of mathematical intuition is

that opponents of mathematical intuition often frame intuition as a cognitive faculty which leads
somehow inexplicably to infallible claims.  Such a concern is beside the mark for the version of intuition
on which I rely.  My appeals to intuition are fallible starting points in a process of reasoning to robust
mathematical theories, as I will describe in the next section.  Still, to the degree to which appeals to
intuition are truth conducive, we must respond to Field’s criticism about their reliability.  Earlier, I took
this challenge as skeptical.  But there is a more charitable understanding of the challenge to explain why
appeals to intuition would be truth-conducive, if not infallible.

Part of the explanation, unsatisfying as it may be, is just that it is a brute fact about the abilities
of mature reasoners to analyze concepts a priori that we often get such analyses right.  We consider
concepts, look at their inferential relations, and derive further concepts from the ones we hold. We
recognize consistency and can distinguish interesting mathematical questions from more pedestrian or
dull ones.  More importantly, our ability to systematize, model, and connect different mathematical
theories provides a constraint on our reasoning which answers some of the complaints about intuition. 
Richard Creath complains that earlier appeals to intuition are desperate because we have no way of
resolving conflicts when intuitions differ.  “This doctrine of intuition...is a scandal.  Intuitions
notoriously differ, and there is no plausible way of resolving these differences” (Creath 1991: 349). 

It is ironic that Creath points to the development of non-Euclidean geometries as part of his

104 McEvoy agrees.  “[T]he platonist ought not see intuition as a separate module” (McEvoy
2004: 433).

105 See Putnam 1994: 506.
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evidence of the problems with intuition.  He is right that some people found the parallel postulate
intuitively compelling.  But mathematicians sought support for that intuition over millennia.  Even Euclid
seemed uncomfortable with it despite its attractiveness and seems to have avoided invoking it early in the
Elements.  If our account of intuition were infallibilist, as Descartes’s was, the variability of intuitions
would indeed be a problem.  But on a fallibilist notion of intuition, this variability of intuitions is utterly
expected and useful.  It helps us find interesting mathematical problems.  Indeed, the case of Euclidean
geometry is one in which we have been able to generalize and expand mathematics just because of the
ways in which intuitions were regarded, as useful starting points and not as infallible guides.  This is a
perfect example of how we can resolve differences about intuitions, by attempting to systematize those
intuitions and examine the variety of theorems provable in the different theories.

It is certainly not the case that we all are born with good and reliable mathematical intuitions. 
Our mathematical abilities require training and that training allows us to hone our skills.  Our early
perceptual and small motor skill are lousy at first; we mature.  The same process holds for mathematical
skills, including our intuitions about mathematical claims.

From a phenomenological point of view, at least some of us have experiences which can be
called intuitions about mathematics: immediate, non-inferential graspings of mathematical concepts and
relations.  Such experiences are a natural and ubiquitous facet of mathematical practice despite our lack
of a neuroscientific account of them.

We do not pretend to have a theory of a mechanism which explains how we come to form
intuitive notions which are so astonishingly successful...But we regard it as absurd to reject the
use of this ability just because we don’t have a theoretical explanation... (Kreisel and Krivine
1971: 169; see also Lavers 2009: 6).

Intuitive experiences presumably have some neural correlates and so are not un-natural or
spooky.  The question is whether they can play a legitimate role in mathematical epistemology.

It might be useful, in thinking about mathematical intuition and the charges of mysterianism
levied against it, to contrast the case with another philosophical view charged with mysterianism.  Mind-
body dualism is historically defended by those who accept faculties akin to mathematical intuition, and
one can see similarities in the two views.  Both are posited by those who find physicalistic accounts of
their respective disciplines (philosophy of mind, philosophy of mathematics) lacking.  Both involve
commitments to non-sensible objects.  Further, the two views may be naturally aligned.  If, as Putnam
argues but I deny, we can not account for mathematical intuition neuro-scientifically, the dualist can
always claim that intuition is a faculty of the disembodied mind.  Granting dualism, who could argue?

Still, it would be a mistake for the defender of mathematical intuition to align with the mind-
body dualist.  The similarities of the two cases are formal and shallow.  Furthermore, mind-body dualism
is so contentious a view that associating one’s philosophy of mathematics with it weakens the account
rather than strengthens it.  Also, mind-body dualism is false.

The most important dissimilarity between the two views is that in the dualist’s case, a neuro-
scientific account of mental activity obviates the motivation for positing disembodied souls.  For earlier
dualists, like Descartes or Leibniz, the difficulty (they might say ‘impossibility’) of conceiving how
conscious experience could be aligned with the physical mechanisms of the body led to the posit of a
non-corporeal seat of thought.  Leibniz considers walking inside the mechanical parts of a supposedly-
thinking physical substance, like a brain.  We would see only moving parts: no memory, no thought. 
Like Ned Block’s Chinese Nation case, Leibniz’s thought experiment seems to show that the physicalist
has difficulty explaining consciousness.  “Perception, and what depends on it, is inexplicable in terms of
mechanical reasons, that is, through shapes and motions...When inspecting its interior, we will only find
parts that push one another, and we will never find anything to explain a perception “ (Leibniz,
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Monadology §17).  
In contemporary philosophy of mind, these earlier arguments for positing a non-corporeal soul

are re-framed as purportedly showing that there is an explanatory gap between neuro-scientific accounts
of human experience and our conscious awareness of that experience.  Bridging this gap is sometimes
called the hard problem of consciousness.  Since there can be no thought in a mechanical body, the
dualist (or idealist monist) argues, there must be some essentially active, essentially perceptive,
essentially conscious component to the basic elements of the world: souls.

These arguments for dualism, both historical and contemporary, rely on a subjective inability to
conceive how conscious experience can be an aspect of physical activity.  The more we learn about the
specifics of how neural activity correlates with our experience, the smaller the supposed explanatory gap
seems to be.  Advances in neuroscience move philosophers away from dualism.

In contrast, advances in neuroscience do not mitigate the motivation for positing abstract
mathematical objects at all.  Mathematical objects are posited in order to account for the semantics of
mathematical sentences we take as among our most secure, like ‘there are prime numbers’.  Neuroscience
can help explain how our brains work when subitizing, calculating, or inferring.  But such accounts go no
way to undermining the semantic analysis of mathematical sentences.  Providing the neural correlates of
consciousness reduces or eliminates the motivation to posit a soul.  Providing the neural correlates of
mathematical thought reduces or eliminates the motivation to posit a soul which is the seat of that
thought, but has no effect on how we understand the subjects of such thoughts, on how we best model
our mathematical theories.

A contemporary mind-body (substance) dualist persists in positing a mysterious non-corporeal
substance with an active, causal-explanatory role in our experience despite the advances in neuro-
scientific explanations of that experience.  For seventeenth- and eighteenth-century philosophers, without
the benefit of contemporary neuroscience, such a posit might seem justifiable.  For contemporary
philosophers, positing a soul is stubborn adherence to mysterianism in the face of powerful explanatory
physical theories.  But positing abstract mathematical objects remains the best account of the semantics
of our mathematical sentences, whatever the neural correlates of our mathematical experiences, like
counting or apprehending a proof, turn out to be.

In exactly the same way in which our knowledge of the external, physical world begins with an
apprehension of physical objects in the absence of any plausible reductionist account to sensory
stimulation, we begin our exploration of mathematical knowledge in the absence of an account of
intuition.  In both cases, the account must be judged on the basis of what is the best overall account of
our common-sense views of both mathematics and the physical world.  It may turn out that the best
account of our purported mathematical knowledge involves denying that we have any.  But such a denial
must carry with it an account of why we seem to have mathematical knowledge and this is a task which
no eliminativist about mathematical intuition has accomplished.\

§5: From Mathematical Intuition to Mathematical Theory
The intuition-based epistemology that I am proposing starts with a weak (i.e. fallibilist) version

of mathematical intuition.  Intuition yields some mathematical beliefs.  But the account so far does not do
justice to the breadth and security of our beliefs.  Moreover, since even the best mathematical intuitions
may lead us to false beliefs, we need some method to improve our beliefs, some way to systematize and
check them.

McEvoy’s sketch of intuition-based autonomy platonism includes both an apprehension of some
elementary mathematical truths and the connection of those truths with other truths, presumably through
the development of axiomatic systems and some logical apparatus governing deduction.  We must be able
to compare different systematizations for their mathematical and more-general theoretical virtues.  

These processes of refining and improving on the mathematical beliefs generated by intuition are
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just the natural and well-refined methods of mathematics.  In other areas of philosophy, the process is
well known as the method of seeking reflective equilibrium.  We balance our intuitive apprehension of
basic mathematical facts with our evaluations of the systematizations of our mathematical knowledge. 
The systems tend to be organized axiomatically.  The intuitions are constraints on the system-building
and the systems are constraints on the intuitions.  Bertrand Russell describes the process neatly.

When pure mathematics is organized as a deductive system - i.e. as the set of all those
propositions that can be deduced from an assigned set of premises - it becomes obvious that, if
we are to believe in the truth of pure mathematics, it cannot be solely because we believe in the
truth of the set of premises.  Some of the premises are much less obvious that some of their
consequences and are believed chiefly because of their consequences.  This will be found to be
always the case when a science is arranged as a deductive system.  It is not the logically simplest
propositions of the system that are the most obvious, or that provide the chief part of our reasons
for believing in the system (Russell 1924: 325).

We hold some basic mathematical claims to be true, and necessarily so: simple arithmetic facts,
core geometric propositions, some set-theoretic claims, maybe Hume’s Principle.  We seek
systematizations of those particular beliefs both to see if they are consistent and to make connections
with other mathematical theories.  We balance our formal theories with our particular beliefs, adjusting
the axioms as they fit the theorems, perhaps giving up some basic (intuitive) principles in order to
achieve an elegant systematization.

In her masterful, “Believing the Axioms,” Maddy hints at the role of intuition in set theory in
moving from simple and vague claims to systematized axioms.  She claims that the pairing and union
axioms are the formal versions of some nascent intuitions.

When justifications are given, they are based on one or the other of two rules of thumb.  These
are vague intuitions about the nature of sets, intuitions too vague to be expressed directly as
axioms, but which can be used in plausibility arguments for more precise statements... the two in
question are limitation of size and the iterative conception (Maddy 1988: 484; see also Decock
2002: 242).

As we move from rough intuitions to precise formal theories, we are guided by two three main
cognitive tools: our ability to recognize consistency, our inferential powers, and our mathematical
intuition.  The former guides the mathematician categorically, especially where she invokes rigorous
formal systems, logics which, as was Frege’s goal, wear their consistency on their syntactic sleeves.  Our
inferential tools are both formal and intuitive.  The latter guides the mathematician where the former two
fail.

In assessing the balance between sets of axiomatizations and particular mathematical claims,
intuition again guides us fallibly.  There are two ways in which our intuitions might steer us wrong. 
First, as we have already seen, we might give up some basic claims which appear intuitive.  An
unrestricted comprehension axiom in set theory appeared intuitively correct to Cantor and Frege and
others; Bealer reports that it still seems correct to him.  Similarly, Euclid’s parallel postulate seemed
intuitively correct for millennia before the development of robust non-Euclidean geometries showed the
limits of its range.  

Conversely, Leibniz’s work with infinitesimals and Newton’s work with fluxions seemed
intuitively false to many mathematicians: how could the sum of an infinite number of infinitely small
quantities result in a finite quantity?  Their methods were eventually justified not only by their fruition
but by the epsilon-delta definition of limits which grew out of the nineteenth century work on
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arithmetizing analysis.
Second, we might find that certain systematizations better organize mathematical phenomena

than others.  A perhaps old-fashioned way to think about the virtues of formal systems is to evaluate the
intuitive nature of the axioms.  The old story says that theorems are justified by their derivability from
axioms and axioms are judged by their obviousness.  As Russell noted, this old story fails to capture the
proper relationship between axioms and theorems, a relationship in which axioms depend on theorems as
much as theorems depend on axioms.  The lively contemporary research project of reverse mathematics
is precisely an attempt to work toward axioms from theorems and serves as an supporting example for
Russell’s claim.

Instead of judging axioms by their foundational certainty or obviousness, then, we judge entire
formal systems.  Our intuitive judgments about forrmal systems may vary and err.  For a simple example,
consider whether arithmetic is best captured by Peano axioms, by those axioms modeled within set
theory, by those axioms modeled within category theory, or within second-order logic.  Relatedly,
consider Benacerraf’s famous question about how best to model the objects of arithmetic within set
theory, using Zermelo sets or Von Neumann sets.  Mere apprehension of consistency can not guide our
choices among provably equivalent models or axiomatizations.  Intuition guides our preferences within
the constraints of consistency.

Consider a proposition such as the axiom of choice.  To some, in some formulations, it seems
obviously and intuitively true.  For example, in a simple and natural formulation, it merely says that for
any set of sets, there is a choice set, one which consists of exactly one member of each of the sets.  Other
formulations are far less intuitive.  Indeed, given a background of ZF set theory, the axiom of choice is
equivalent to the well-ordering theorem, that every set can be well-ordered, including sets like that of the
reals which we have utterly no idea how to order.  Intuitions about the axiom of choice thus vary; on pain
of consistency, the intuitions can not all be correct.  Moreover both the axiom of choice and its denial are
consistent with the axioms of ZF, if ZF is consistent.

To evaluate the axiom of choice, we look at the ways in which it facilitates inferences and at
what theorems can be proved with it and without it.  We evaluate both the broader systems and the
further theorems by their intuitiveness, balancing a range of factors, especially strength and elegance. 
Whether or not we should believe the axiom of choice will thus be guided by our intuitions about both
axiomatizations of set theory and particular further theorems.  We seek reflective equilibrium between
our particular intuitions and our systematizations, again guided by consistency and our intuitions about
theoretical virtues.  This is all just standard mathematical practice.

Baker emphasizes the way in which axioms are inferred from theorems in response to Juha
Saatsi’s claim that mathematics is deductive.  Saatsi rightly argues that we do not make abductive
inferences from physical phenomena to mathematical objects.106  Baker replies that our methods often are
abductive.

Consider the axioms of our preferred mathematical theories, for example the axioms of ZFC.
However these are justified, it is not by deduction from other more basic claims. One idea is that
what is going on here is abductive: the axioms are chosen that best systematize the basic set
theoretical (or arithmetical, or geometrical) claims that we accept. And that doesn’t look too far
away from ‘the inductive method’ (Baker 2009: 629).

Baker is right that our inferences to the axioms are not deductive.  They may even reflect some

106 Saatsi also wrongly argues that we do not make abductive inferences from mathematical
phenomena, an argument I will ignore here.
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aspects of induction, insofar as inductive methods are sometimes structurally similar.  But the inductive
base for our choices of mathematical axioms is not observational or empirical in any way.  When we
choose axioms, we look at the kinds of theorems we can infer from them, we see how elegant and
powerful a theory we can construct with them, we seek connections to other theories.  This method may
be structurally like abductions in empirical science, but the similarity is merely structural.

I will say little more here about the process of achieving reflective equilibrium in mathematics,
my intuition-based epistemology for autonomy platonism.  It embraces ordinary and natural descriptions
of mathematical methods.  Those methods vary and there is much more to be said about the ways in
which mathematicians do their work.  There are deep and interesting questions, for instance, about the
roles of computers in mathematical proofs, about inductive procedures, about the relation of truth to
proof, and many more such questions.  The procedure I have described briefly here as the method of
seeking reflective equilibrium in mathematics is general enough to be adapted naturally to whatever gets
properly called mathematics.  I do not pretend to be presenting an original or controversial analysis of
mathematical methods.  I am claiming that ordinary mathematical practice, whatever it is, plays a central
role in our mathematical epistemology.

But I have a bit more to say about two remaining open questions.  The first is about mathematical
ontology.  The methods I have been discussing in the last two sections have described the relation
between our beliefs and mathematical propositions, but I have not spoken enough of beliefs about
mathematical objects.  I will not say much beyond what I will say in the next section: our beliefs about
mathematical objects arise from considerations of standard semantics for mathematical theories.  My
main concern is to say that that is all that one needs to say.

The second question is whether the process that I described as seeking reflective equilibrium in
mathematics is one of justification.  I began §3 by emphasizing two constraints on any mathematical
epistemology, that it be consistent with a non-mystical view of humans and that it fit with our actual
practices.  The epistemology I am defending clearly captures our mathematical methods since it focuses
on the relationship between those methods and our mathematical beliefs.  The more important question is
whether those methods are justifications of those beliefs.  That is the subject of the next and last
substantial chapter of this book.

§6: On What Mathematical Objects There Are
In the past two sections, I have described the ways in which we balance our beliefs in particular

mathematical claims, ones which may or may not be intuitive, with our beliefs about how best to
organize and systematize those claims.  These beliefs are about propositions, not objects.  But I have
been moving easily in this book between object platonism, characterized by the claim that some
mathematical objects exist, and sentence platonism (or truth-value platonism), characterized by the claim
that some mathematical claims are non-vacuously true.  That is, I am defending autonomy platonism as
both a realism about mathematical claims and a realism about the existence of mathematical objects.  In
this section, I discuss the simple inference of object platonism from sentence platonism.  My goal is not
so much to defend the inference of object platonism from sentence platonism, though I believe that the
inference is valid.  The goal of this book is to contrast two versions of object platonism and so a full
defense of object platonism is unnecessary.  My central concern here is to block the strongest objection
to object platonism so that reinterpretive views of mathematics, ones which deny the inference to object
platonism from sentence platonism, lose their motivation.

The central challenge for object platonism has come to be known as the access problem: how can
we, whose epistemic capacities seem limited to sense experience, have knowledge of the abstract objects
of mathematics?  The access problem arises from platonism’s natural two-realm view, that the referents
of mathematical singular terms inhabit a realm which is separate from us.  The access problem motivates
much of the common derision of mathematical intuition.
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One way to try to solve the access problem for platonism involves positing a special human
ability to learn about abstract objects.  This approach is exemplified by Plato, Descartes, Gödel, and
Katz, among many others.  The central complaints about rationalism involve accusations of mysticism
and desperation, and failure of parsimony, both epistemological parsimony and parsimony of the
resulting ontology.  If mathematical intuition is a special faculty of grasping abstract objects, the charges
of mysterianism seem apt. 

The solution, for my intuition-based autonomy platonist comes, perhaps ironically, from the
work of Quine.  While I have been critical of many aspects of Quine’s work in the philosophy of
mathematics, this criticism does not apply to his solution to the access problem.  His solution arises not
from his appeal to empirical science to justify our mathematical beliefs or from his holism.  It comes
from his view of ontology as the result of positing, of modeling our best theories.  Quine’s posits-based
approach to ontology is consistent with the intuition-based autonomy platonism I have described.  It
replaces questions of access with justifications of theories and their corresponding posits. 

To demand access is to demand that a perceiver be able to correlate the objects he or she believes
exist with particular perceptions.  The traditional empiricist requires lines of access from, say, the tree to
my eyes, to my brain, to my beliefs.  He or she draws roughly parallel lines to account for beliefs about
all objects.  The sense-data reductionist demands, as did Hume, a connection to sense experience for
every legitimate claim.

Quine denies that a satisfactory account of piecemeal access, like that of the sense-data
reductionist, is available, independently of the mathematical case.  His alternative method is a response
to the difficulties of describing our access both to ordinary objects and the posits of empirical theories,
objects which are too small or too distant to perceive.  Instead, Quine isolates evidence, on one side of a
theory, and ontology on the other.  Between them stands a theory which, as a whole, must be consistent
with the evidence.

Central to the autonomy platonist’s criticism of the indispensability argument is the rejection of
Quine’s holistic claim that evidence for scientific portions of our best theories extends to their
mathematical theorems.  My rejection of the transfer of evidence from science to mathematics does
nothing to undermine the legitimacy of holism within scientific theory when applied to the objects of
scientific theory.107  More importantly, I have said nothing to undermine Quine’s proper claim that
ontology is the result of modeling our best theories.  The difference between the autonomy platonist and
the indispensabilist is on the question of which theories we should believe.  The indispensabilist says that
mathematical theories, on their own, having nothing to do with sense experience, do not independently
compel our belief.  It is only when they are invoked for the purposes of constructing theories which
account for our sense experience that the cease being mere recreation.  The autonomy platonist argues
that mathematical theories themselves are proper objects of belief whether or not they are used in
physical science.

So I am arguing that we should believe our mathematical theories and that beliefs in
mathematical objects follow directly.  We use mathematical intuition as part of both our acquisition and
justification of our mathematical beliefs, but not as a special faculty of perception of mathematical
objects.  Our knowledge of mathematical objects is not the result of any kind of special extra-sensory
apprehension.  It is just a result of interpreting our best mathematical theories, taking mathematical
objects to be posits of mathematical theories in the same way that electrons, quarks, trees, and cats are
posits of scientific theories.

107 Sober believes that Quine’s holism does falter within science, that we confirm or disconfirm
small portions of a scientific theory when we test a particular hypothesis.  I remain agnostic here on that
claim.



AP and the IA, Chapter Nine: Two Versions of Autonomy Platonism, page 134

Thus, if my epistemology for autonomy platonism is correct, there is no worry about access. 
Quine’s method effectively and decisively dissolves the access problem.  Some philosophers, unclear
about how the access problems for mathematical objects is moot, are more comfortable with sentence
platonism.  The way in which I account for our knowledge of mathematics (i.e. the justification of our
mathematical beliefs) begins not with apprehension of objects but intuitions about the truths of
mathematical claims.  So even if someone were to worry about the posit-based account of our
mathematical ontology, the remainder of my account remains secure.

Such hesitance, though, is unwarranted.  The access problem is a latent vestige of an old-
fashioned and false view of ontology as exhaustively described by those objects which are given,
immediately, in sense perception.

§7: The Yield of Intuition-Based Autonomy Platonism
So there are two excellent lessons to be learned from Quine’s work on the indispensability

argument.  First, the posit-based view of ontology is important to explain and justify our beliefs about
objects not directly available to sense experience; that method applies broadly, in science and
mathematics.  For Quine, those disciplines are inseparable.  For the autonomy platonist, those are
independent disciplines.  Either way, the objection against platonism that there is a problem about access
to mathematical objects is deflated.

Second, my defense of our capacity of mathematical intuition has a formal similarity to the
indispensability argument.  Both are kinds of inferences to the best explanation and so rely on posits.  For
the indispensabilist, we infer mathematical knowledge as the best explanation of the ubiquity and
effectiveness of mathematics in science.  Much of the preceding portion of this book is a rejection of that
inference.  But for my intuition-based epistemology, we infer mathematical intuition not merely from its
phenomenological properties, but also from our mathematical knowledge: it is implausible to account for
that mathematical knowledge without positing a capacity of mathematical intuition.  Therefore, we
should believe that we have such a capacity.

A significant advantage of intuition-based autonomy platonism over indispensability platonism is
its ability to avoid the unfortunate consequences, both those which apply to mathematical claims and
those which apply to mathematical objects.  Invoking the method of seeking reflective equilibrium in
mathematics does not impugn or denigrate the status of mathematical claims.  The constraints on
mathematical systematization are purely mathematical.  The process of developing and justifying
mathematical theories contains ineliminable a priori elements.  The fact that we hold our mathematical
beliefs fallibly does not detract from our apprehension of their necessity.  We hold them to be true
necessarily, if true, and false necessarily, if false.  Our faculty of intuition and the procedures by which
we justify our beliefs, working reflectively between intuition and systematization, are imperfect.  But the
modal status of the claims we consider are unaffected by these imperfections.

In parallel, and in contrast to the indispensabilist’s platonism, there is no reason for the intuition-
based autonomy platonist to worry about characteristics like temporality or ontic blur.  Our best
understanding of mathematics is one in which no temporal properties (other than mere Cambridge
properties, like being thought of by a person at a time) apply to mathematical objects.  Mathematical
objects are utterly different from physical objects, arising as posits of mathematical theories which are
independent of empirical science.

We have seen two different accounts of autonomy platonism which can be used as alternatives to
indispensability platonism and its unfortunate consequences.  Balaguer’s FBP is the less contentious. 
But FBP does not best capture the nature of mathematical practice and fails to account both for the
necessity of mathematical claims and for the ways in which we seek answers to open questions.  My
version of autonomy platonism takes the modal character of mathematical claims as a datum and captures
the way mathematicians work, balancing their intuitions about mathematical results with their



AP and the IA, Chapter Nine: Two Versions of Autonomy Platonism, page 135

formalizations and systematizations in proofs.
I have shown that the nature of mathematical intuition, rather than being contentions and

mystical, is ordinary and natural.  So is our theorizing.  Moreover, the ways in which we derive our
ontology from modeling our theories dissolves the traditional access problem.  Still, traditional platonism
has been attractive to many folks for its securing of our mathematical beliefs.  If our intuitions are
fallible, and our theories are guided by no more secure method, and our ontology arises from interpreting
our theories, it seems that the traditional security of mathematical reasoning is lost.

So be it.  The Humean condition is the human condition.  Even in mathematics, we have no
assurances that our reasoning is free from error.  Claims of traditional platonists, like Descartes, to
foundational security were unfounded.

Still, a glib dismissal of old-fashioned foundationalism goes no distance to answering the
resultant worry about my version of autonomy platonism.  I may have done justice to the ways in which
mathematics is practiced.  But what shows that I have actually justified any beliefs?  The method of
reflective equilibrium on which my account is founded seems, like coherentist epistemologies, to be
liable to be untethered to mathematical truth.  On my account, we justify the beliefs based on our
mathematical intuitions by appealing to the constructions of mathematical theories and we justify the
mathematical theories at least partly by their consistency with our intuitions.  This method threatens to
undermine the justificatory role that an epistemology for mathematics is supposed to provide.  Such an
account seems liable to charges of circularity. 

And so it is.  In the next chapter, I will respond to the charge of circularity, embracing the
circularity in the account but arguing that the circularity is not problematic and does not debar my
account from justifying our mathematical beliefs.



Chapter Ten: Circles and Justification

My intuition-based platonism is autonomous because it takes the justification of mathematical
beliefs to be independent of the uses of mathematics in scientific theory or explanation.  Since such
justification is independent of science, it must have another basis.  I make a couple of simple claims.  We
are justified in believing in mathematical objects because they are the referents of singular terms in many
true mathematical sentences or objects in the domain of their models.  We are justified in believing many
mathematical sentences to be true because they ascribe properties to mathematical objects that they truly
have.  ‘The positive square root of seven is greater than two and less than three’ is true.  It is true because
it ascribes properties and relations to numbers which they actually have or stand in. 

I have been arguing that standard charges of mysterianism and worries about access for the
platonist are unfounded.  Now I must deal with a more-serious concern about the epistemology I am
promoting.  The claim that mathematical beliefs are autonomous is, in its barest form, just the clam that
they are self-justifying, The claim that mathematics, indeed any set of claims, can be self-justifying has
an air of sophistry.  Indeed, others have rejected the view that I am defending just because it sounds like a
viciously circular argument.  I’ll start this chapter by looking at the reasons others have for rejecting
claims that mathematics is autonomous and thus self-justifying.  Then, in the majority of this chapter, I’ll
argue that my account is circular, but not problematically so.  

§1: Bootstrapping
In the absence of scientific justifications of mathematical beliefs, given the Unfortunate

Consequences of even the strongest version of the indispensability argument, one might wonder whether
mathematics can justify itself.  Perhaps we should admit mathematical objects into our ontology, not
because of their indispensable use in physics or biology or psychology or economics, but because they
are the objects to which mathematical theories themselves refer.  If we accept the legitimacy of
mathematics in its own right, the indispensability argument is otiose.

Unfortunately, taking mathematical claims to be self-justifying appears to be illicit
bootstrapping.  If theories could justify themselves, any theory of anything would be justified.  Ghosts
may be required for the study of paranormal phenomena and witches may be required for the study of
sorcery.  The argument for the truth of the claims or the existence of the objects of a discipline can not
depend solely on their indispensability within that field.

It is interesting to note that invoking purely mathematical justifications for mathematical claims
is one way think about naturalizing our epistemology for mathematics on one interpretation of
‘naturalism’ discussed by Maddy.108  If we take naturalism to entail a deference to the practice of
scientists, the naturalist might take the claims of practicing mathematicians at face value, as we saw in
§4.5 with what Baker called strong mathematical naturalism.  Mathematicians say things like, “There are
infinitely many primes.”  At face value, there is no doubt that mathematical objects exist.  The defender
of this mathematical-practice argument has no need to wonder whether our scientific theories or
explanations or practices commit us to mathematical objects because we are already committed to them
by mathematical practice.

A problem with this mathematical-practice argument, for the naturalist, is that it contradicts
another compelling sense of ‘naturalism’, one on which only natural (i.e. concrete and not abstract)
objects exist.  This latter version of naturalism is really an eleaticism on which only objects in space-time
or objects which are causally active exist.  On this latter version of naturalism, mathematical objects are
ruled out of our ontology nearly by definition.

But the central problem with the mathematical-practice argument is that we need justification for
taking mathematical statements at face value.  We do not know if mathematical practice itself is to be

108 See §3.1.
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taken seriously in the way that we do not take seriously the practice of purported psychics and sorcerers. 
Even if we accept mathematical practice generally, the references to mathematical objects by
mathematicians in their work may be instrumental or unserious.  The work of Geoffrey Hellman and
Charles Chihara in reformulating mathematical claims as modal claims is meaningful precisely because
we need not take mathematical claims at face value.  As Michael Potter observes, “What mathematicians
say is not always a reliable guide to what they are doing: what they mean and what they say they mean
are not always the same” (Potter 2007: 18).

The question of whether mathematical claims are to be taken at face value is exactly the question
of whether mathematics is self-justifying, whether bootstrapping or circular justification in mathematics
is legitimate.  Penelope Maddy and Hilary Putnam have each explored positions liable to such a
bootstrapping criticism.  Let’s look at these two positions, see what they’re missing, and then see how to
provide that for my autonomy platonism.

Maddy’s arguments pave much of the route I have traveled in this book, though from a
naturalist’s, rather than a platonist’s, perspective.  She responds to two related worries about the
indispensability argument which I share.  First, she is concerned that the extent of the mathematical
beliefs which are justified by the indispensability argument is limited (i.e the unfortunate consequence
Restriction).  She notes that practicing mathematicians believe in a fuller mathematical universe than
empirical science requires.109  Second, she complains that the indispensabilist’s view is inconsistent with
mathematical practice (i.e. the unfortunate consequence Subordination of Practice).  “[I]ndispensability
theory cannot account for mathematics as it is actually done...” (Maddy 1992: 289).

Moreover, Maddy claims that mathematical practice, rather than empirical science, should
determine mathematical ontology. 

If a mathematician is asked to defend a mathematical claim, she will most likely appeal first to a
proof, then to intuitions, plausibility arguments, and intra-mathematical pragmatic considerations
in support of the assumptions that underlie it. From the point of view of the indispensability
theorist, what actually does the justifying is the role of the claim, or of the assumptions that
underlie its proof, in well-confirmed physical theory. In other words, the justifications given in
mathematical practice differ from those offered in the course of the indispensability defence of
realism (Maddy 1997: 106).

Maddy thus presents a modified indispensability argument which first appeals, like the standard
indispensability argument, to the indispensable applications of mathematics to convince us generally that
there are mathematical objects.  Then she modifies the argument by appealing to mathematical practice
itself to determine the extent of mathematical ontology.  “The compromise goes like this. Take the
indispensability arguments to provide good reasons to suppose that some mathematical things (e.g. the
continuum) exist.  Admit, however, that the history of the subject shows the best methods for pursuing
the truth about these things are mathematical ones, not those of physical science” (Maddy 1997: 108). 

Maddy’s approach renders the indispensability argument otiose in favor of some pure
mathematical justifications.  Her defense of pure mathematical justification comes via appeals to strong
mathematical naturalism.  “Mathematics, after all, is an immensely successful enterprise in its own right,
older, in fact, than experimental natural science.  As such, it surely deserves a philosophical effort to
understand it as practiced, as a going concern... [A] philosophical account of mathematics must not

109 In later work, Maddy moderates this claim, saying that mathematics itself is indifferent to
ontology.  “[M]athematics in application...tells us nothing about mathematical truth or ontology” (Maddy
2007: 344).
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disregard the evidential relations of practice or recommend reforms on non-mathematical grounds”
(Maddy 1992: 276).

Insofar as Maddy invokes a standard indispensability argument, her view may be as effective or
anemic as QI in justifying beliefs about applied mathematics.  Let’s put concerns about those beliefs
aside to focus on the extension of the argument.  By itself, Maddy’s modified indispensability argument
provides an incomplete justification of pure mathematics.  If her justification comes only from
mathematical practice, then it suffers from the standard worries about bootstrapping.  Appeals to psychic
powers and revelation are also older than experimental natural science.  While mathematical practice
may be successful explaining mathematical phenomena, psychic powers may be successful in explaining
psychic phenomena.  The natural scientist claims that ghosts do not exist and thus we need no account of
our knowledge of them.  Similarly, the scientist with nominalist tendencies claims that mathematical
objects do not exist, and thus we need no account of them.  Maddy’s account of pure mathematical
justification needs more than a bare appeal to practice.110  Unfortunately, her naturalism, which she lately
calls second philosophy, debars any kind of extra-mathematical evidence.

Putnam similarly flirts with a position liable to a bootstrapping criticism.  To see his argument,
let’s return to the success argument from §6.2.  “I believe that the positive argument for realism has an
analogue in the case of mathematical realism.  Here too, I believe, realism is the only philosophy that
doesn’t make the success of the science a miracle” (Putnam 1975: 73).

Note that Putnam’s words are open to at least two different interpretations.  It might be taken as
an ordinary indispensability argument, as I took it when I interpreting it as MS.  Or it might be taken to
be a hint at an autonomy platonism.

MSB MSB1. Mathematics succeeds in itself.  That is, it is fruitful.
MSB2. There must be a reason for the success of mathematics.
MSB3. No positions other than realism in mathematics provide a reason.
MSBC. So, realism in mathematics must be correct.

Like Maddy’s modified argument, MSB is, by itself, insufficient to justify mathematical beliefs
because it appeals to illicit bootstrapping.  We need antecedent criteria to determine whether a theory is
successful in the sense of MSB1.  If the criteria come from within the theory, then any theory can be
deemed successful.  The crystal ball can tell you to believe the crystal ball.

Putnam and Maddy are correct that within mathematics, mathematical criteria reign.  We can
justify a posit, for example, by its fruitfulness.  Consider Descartes’s posit at the foundation of analysis.

AG  There is a one-one correspondence between the points on a line and the real numbers.  

Even lacking proof that there are as many points on a line as there are real numbers, the
fruitfulness of analysis makes it indispensable for the practice of mathematics.  Thus we should believe
AG.  Similar arguments can be made within a variety of special sciences.  The objects of biology (e.g.
DNA sequences) have indispensable uses in biology.  Preference orderings have especial uses in
economics.  For these disciplines, there is a kind of indispensability underlying their posits.  Such
justifications might be called intratheoretic indispensability arguments.111  Intratheoretic indispensability

110 Regarding Maddy’s view, Marianna Marfori writes, “[M]athematical naturalism...ultimately
fails to explain the difference between mathematics and pseudo-science” (Marfori 2012: 337).

111 See Marcus 2010, §8.
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arguments are kinds of inferences to the best explanation.  They yield justifications of particular
theorems in mathematics and other sciences in the same way that a theoretical posit in physics yields
electrons.  They demonstrate connections and entailments within theories.  But when it comes time to
evaluate the theory itself, when we wonder if we should believe in mathematical claims or biological
claims or alchemical claims or psychic claims, or what makes it the case that we do believe them when
we do, intratheoretic indispensability arguments are insufficient.  We can only entertain a statement such
as AG if we have prior commitments to points and lines and real numbers.  Within a discipline, such
arguments are often essential.  But they cannot justify, by themselves, knowledge of an entire discipline
like mathematics.

So the question which faces Maddy’s modified argument and Putnam’s MSB is how to establish
the legitimacy of pure mathematics.  One option is to step back to look at the discipline as a whole to see
if it has properties that would render it acceptable.  We know that parapsychology, unlike biology or
mathematics, say, does not have the legitimacy of a proper science.  If we had a method for
distinguishing the good theories from the bad ones, we could apply them to know whether mathematics is
a proper science.  Criteria for good science would rule out obviously unacceptable fields, like
parapsychology, and rule in obviously acceptable ones, like empirical science.  Then, we can see what
they say about mathematics.

In the philosophy of science, the problem of settling on these criteria is known as the
demarcation problem.  I will say more about it later in this chapter.  For now, note that without a solution
to the demarcation problem, or at least a demonstration that any solution must pronounce mathematics
legitimate, any claim for the autonomous legitimacy of mathematics appears liable to a bootstrapping
criticism.  Maddy’s modified indispensability argument and Putnam’s MSB both suffer these problems
which could be solved if we find a reasonable solution to the demarcation problem. 

Appeals to a solution to the demarcation problem, while welcomed by the intuition-based
autonomy platonist, are debarred by some versions of naturalism, most-famously Quine’s and most-
relevantly Maddy’s.  Quine urges abandonment of any first philosophy as a consequence of his holism:
there is no perspective from which to evaluate theories outside of the theories themselves.  For Quine, the
demarcation problem is moot since there is only one theory, properly understood, and no way to step
outside of that theory to evaluate it.

Maddy’s modified indispensability argument is also crippled by this naturalistic inability to
evaluate theories.

The Second Philosopher—bless her!—doesn’t talk this way; just as she employs no demarcation
criteria for science vs. non-science, she has no litmus test for philosophy vs. non-philosophy.
Instead, she notes...that considerations of existence and truth and knowledge, of ontology and
epistemology, do not in fact play an instrumental role in settling questions of mathematical
method (Maddy 2007: 349, fn 12).

The intuition-based autonomy platonist holds no such prejudice about first philosophy.  We need
not take the dictates of our first-philosophizing as infallible.  But we can formulate some defeasible
criteria for evaluating theories and by doing so avoid worries about circular argumentation.

The argument of the remainder of this chapter is a defense of circular justification in philosophy
and the conclusion that mathematics is indemnified against bootstrapping criticisms by a proper
understanding of (if not a solution to) the demarcation problem.  

§2: Two Circles in Philosophy
The problem of circular justification has a long history in philosophy.  To take a well-worn

example, consider this excerpt from the letter of dedication preceding Descartes’s Meditations.
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It is of course quite true that we must believe in the existence of God because it is a doctrine of
Holy Scripture, and conversely, that we must believe in Holy Scripture because it comes from
God; for since faith is the gift of God, he who gives us grace to believe other things can also give
us grace to believe that he exists (Descartes, CSM II: 3; AT VII: 2).

As Descartes recognizes, the circularity of the scriptural argument is problematic, perhaps
formally so.  One might generalize this result as showing that circular structures like this one are
inherently fail to justify any claim within the circle.  The consequences for the intuition-based autonomy
platonism I have sketched are potentially devastating.

For a more-recent, yet no-less well-worn, argument, consider Quine’s opposition to meanings in
“Two Dogmas of Empiricism.”  Quine argues that any definition of ‘meanings’ used to support an
analytic/synthetic distinction is circular.  The identity conditions for meanings are synonymy: two terms
have the same meaning if and only if they are synonymous.  But in order to explain synonymy, one must
appeal to concepts which presuppose meaning or synonymy.  Since all attempts to characterize synonymy
are inter-related, any attempt to define synonymy leads one into a circle of intensional concepts.

Quine limns three possible grounds for defining synonymy: logic, dictionary definition, and
substitutivity salva veritate.  We can introduce logical rules to govern synonymy, but only on the basis of
our prior understanding of which terms are to be taken as synonymous and which sentences are to be
taken as analytic.  We thus define synonymy in terms of analyticity, in order to explain analyticity in
terms of synonymy.  We say that ‘bachelor’ is synonymous with ‘unmarried man’ because ‘bachelors are
unmarried men’ is analytic and vice-versa.  That’s a circle.

Taking analytic statements to be true by definition also presupposes, rather than explains,
synonymy.  The lexicographer merely reports prior synonymies.  Explication, which adds clarifying
information to a definition, relies on other, pre-existing synonymies.  There are a few exceptions of
definitions by stipulation (e.g. when scientists name a planet or molecule).  But these exceptions are rare
and subject to devolution.  Taking synonymy as dictionary definition presupposes the community’s
understanding of which terms are synonymous, but the community takes terms as synonymous on the
basis of dictionary definitions (or other community standards).  Again, we have a circle.

Lastly, we can appeal to the fact that terms are synonymous when they can be substituted for
each other without changing truth values.  One can substitute ‘unmarried man’ for ‘bachelor’ in ‘a
bachelor is not married’ and related expressions.  But examples like ‘creature with a heart’ and ‘creature
with a kidney’, which are coextensive but not synonymous, force us to strengthen the condition for
substitution.  A natural attempt would insist on substitutivity salva analyticity: two terms are synonymous
if they can be substituted for each other while maintaining the analytic or synthetic nature of the
expression in which they are substituted.  But again, we are met with a circle: defining synonymy in
terms of analyticity in order to define analyticity in terms of synonymy.

Alternatively, we could make the condition for substitution modal, isolating synonymous
expressions as those whose identities are necessary.  It is necessary that bachelors are unmarried men and
it is necessary that anything plain is unadorned.  But, again, such claims are circular in that they explain
one intensional idiom (synonymy/ analyticity) in terms of another (modality).  “Our argument is not flatly
circular, but something like it.  It has the form, figuratively speaking, of a closed curve in space” (Quine
1953: 30).

While he only shows it for these three cases, Quine insists that any attempts to explain synonymy
which appeal to other intensional concepts will be unacceptably circular.  He demands a reduction of
intensional concepts to non-intensional ones.  But it seems impossible to analyze ‘meaning’ reductively. 
Quine concludes that meanings are illegitimate and should be eschewed by our best theories.  Like
Descartes’s unbeliever, Quine rejects a philosophical view because of circularity.
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§3: Pragmatic Analyses
Still, there are some reasons to resist characterizing circular reasoning as always fallacious. 

First, circular arguments are deductively valid; since they conclude what is already in the premises
(either explicitly or implicitly), we can construct no counter-models to any circular argument.  Since
there is no formal error in such inferences, any error must be pragmatic.112

Second, there seems to be a difference between arguing in a circle and begging a question. 
Douglas Walton distinguishes the two by arguing that circular reasoning is not necessarily fallacious
even though begging the question is.113  Arguments are used for purposes and embedded in social
contexts.  When we label a particular argument circular, we often ignore its context and goals.  Once
those are considered, what looks like a vicious circle up close may turn out to be an enthymeme,
presupposing independent evidence for some aspect of the circle.  Background assumptions may always
be brought to bear on any premise.  An argument which appears to be circular in isolation may thus avoid
begging the question.

Walter Sinnott-Armstrong provides an example of a circular argument which can be used
legitimately in some contexts but which is illegitimate in others.

SA Ohio is the Buckeye State.
Mary lives in Ohio.
So, Mary lives in the Buckeye State (Sinnott-Armstrong 1999: 177).

When invoked against someone who denies the first premise (who believes, say, that Indiana is
the Buckeye State), SA merely gainsays, providing no further evidence.  But when presented to someone
who does not know the first premise, SA is unproblematic.  The argument is circular, but can be used
fruitfully.

To identify the contexts of argument, to discover when reasoning is circular and whether a given
circle is fallacious, two models have recently been explored: an epistemic model and a dialogical
model.114

On the epistemic model, knowledge is ordered as in axiomatic theories and circular reasoning is
that which invokes later propositions in arguments for earlier ones.  Within formal systems with an
ordinal ranking among theorems, defining circularity according to the epistemic model might be useful,
at least as a partial definition of a fallacy.  But ordinary and philosophical reasoning is unlikely to be
foundational in this simplistic sense.

Mathematical reasoning, which admits of axiomatic organization, may invoke such an epistemic
model to characterize circularity within particular proofs.  But given the variety of competing
axiomatizations available for any mathematical theory, the epistemic model can not explain mathematical
circularity more generally.

On the dialogical model, circular reasoning is that which assumes a claim which is not part of the
background or common assumptions of the participants in the dialogue.  On this model, an argument is
viciously circular depending on the context of its use.  The question remains: what are the pragmatic

112 Or, anyway, not purely formal.  Biro 1977 argues for an account of vicious circularity which
he calls epistemic and which believes avoids the subjectivity of pragmatic interpretations.  See Sanford
1981: appendix for a response to Biro.

113 See Walton 1991, esp. pp 29-33.

114 See Walton 2006.
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defects of question-begging arguments which distinguish them from benign or virtuous circles?
On either model, the strategy for finding benign or virtuous circles is to seek evidence, in the

earlier propositions or within the dialogue, which can support some aspect of the argument, to ground
one or more premises.115  When presented with a circular argument, one asks whether there are
independent justifications for any of its premises.  If so, the circular argument can be seen as
pragmatically useful even if it contains no novel evidence for its conclusion.  Finding such evidence is
sufficient for identifying virtuous circles.

For Sinnott-Armstrong’s SA, appeals to a state proclamation dubbing Ohio the Buckeye State,
say, could ground the first premise, avoiding circularity.  Roy Sorensen provides compelling examples of
virtuous circles, in five classes of arguments, like RS, which are themselves evidence for their
conclusions.

RS There are at least two tokens of an eleven-word sentence.
So, there are at least two tokens of an eleven-word sentence (Sorensen 1991: 250).

RS and similar examples are neat tricks, consistent with a pragmatic theory of circular argument. 
The evidence supporting such arguments, the grounding of a particular premise, is found directly in the
argument.

Sorensen’s examples, like those characterized as benign on either the epistemic or dialectical
models, are grounded by evidence.  While philosophers debate whether there are further conditions on
virtuous reasoning, they all seem to agree that an ungrounded circle is vicious.  Mill argued for the
weakness of deduction precisely because of its ungrounded circularity.116  The claim that ungrounded
circles are vicious ones, empty and null, continues to be the standard view.117 

The cases of §2 are of ungrounded circles, as is the case of central importance, intuition-based
autonomy platonism.  The recent work on virtuous circles, on dialogical and epistemic modes, does not
engage the question of whether we can accept such circular arguments, ones with no support from
external premises or self-supporting premises.  For such justification, we have to look elsewhere.

§4: Ungrounded Circles in Philosophy
Putting aside pragmatic analyses of circular reasoning which invoke background grounding, in

this section I argue that some ungrounded philosophical circles are virtuous.  Nelson Goodman famously
argues that our justifications of induction and deduction are both circular and not problematic.

How do we justify a deduction?  Plainly by showing that it conforms to the general rules of
deductive inference.  An argument that so conforms is justified or valid, even if its conclusion
happens to be false...  Principles of deductive inference are justified by their conformity with
accepted deductive practice.  Their validity depends upon accordance with the particular
deductive inferences we actually make and sanction.  If a rule yields unacceptable inferences, we
drop it as invalid.  Justification of general rules thus derives from judgments rejecting or

115 See Rips 2002: 773 for references to related work on grounding, in rhetoric.

116 See Mill 1941: Book II, Chapter III, §1.

117 “[T]he innocuous circularity of (all) valid arguments becomes vicious only when such
arguments are used to lead us from a supposedly known truth to a supposedly unknown one, where the
former is no more knowable than the latter” (Biro 1977: 264). 
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accepting particular deductive inferences (Goodman: 1979: 63-4).

According to Goodman, our certainty regarding deduction does not come from a priori insight
into the correctness of some abstract, general principles.  Instead, we have simple beliefs about which
inferences are acceptable.  We formulate deductive principles which accord with these inferences.  We
accept inferences which follow the deductive principles we construct.  We justify the particular
inferences by the general deductive principles, and the deductive principles by their individual instances. 
We have reasoned in a virtuous circle.

Similar remarks hold for Goodman’s views of induction.  Consider how one might introduce a
term like ‘tree’ to a language which lacks it.  We perceive some similarities in our environment, say elms,
maples, and oaks.  We introduce ‘tree’ to apply broadly to these things and not to mountains or cats. 
Once we introduce ‘tree’, we look for some explanation of what makes something a tree, some essence or
unifying principles.  Once found, we can use these principles to determine whether borderline cases (e.g.
pomegranate shrubs, azaleas, or geraniums) are, in fact, trees.  In some cases, we discover that terms we
have chosen do not apply to all of our original paradigms according to our general principles.  ‘Fish’ does
not apply to whales, even if it were originally introduced to apply to all sea creatures.  Scientists
discovered regularities among hidden properties of mammals and other fish which override their more
obvious properties.

An inductive inference, too, is justified by conformity to general rules, and a general rule by
conformity to accepted inductive inferences.  Predictions are justified if they conform to valid
canons of induction; and the canons are valid if they accurately codify accepted inductive
practice (Goodman: 1979: 64).

Goodman’s account of both deductive and inductive justification is clearly, unapologetically, and
ungroundedly circular.  We justify particular inductive or deductive claims or beliefs in terms of general
principles from which they follow.  We justify our general principles in terms of the specific claims they
yield.

This looks flagrantly circular...  But this circle is a virtuous circle.  The point is that rules and
particular inferences alike are justified by being brought into agreement with each other.  A rule
is amended if it yields an inference we are unwilling to accept; an inference is rejected if it
violates a rule we are unwilling to amend.  The process of justification is the delicate one of
making mutual adjustments between rules and accepted inferences; and in the agreement
achieved lies the only justification needed for either (Goodman: 1979: 64).

The virtuous circle that Goodman defends is exactly, in structure, the one I have been defending
for intuition-based autonomy platonism.  It has come to be known, in the work of John Rawls, Catherine
Elgin, and others, as reflective equilibrium.  In A Theory of Justice, Rawls develops a normative ethical
theory, beginning without any presumption of either first principles of justice or stable particular claims. 
Instead, he begins with tentative principles and raw intuitions and works up to theories of justice and
considered judgments which are adopted together.  Our particular ethical judgments support our ethical
theories and our ethical theories yield (and thus justify) particular ethical judgments.  By eschewing
appeals to reductive or grounding principles, he presents his theory of justice as an ungrounded circle.

Rawls developed his method in part by reflecting on Chomskyan linguistic methodology.  

A useful comparison here is with the problem of describing the sense of grammaticalness that we
have for the sentences of our native language. In this case the aim is to characterize the ability to
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recognize well-formed sentences by formulating clearly expressed principles which make the
same discriminations as the native speaker. This is a difficult undertaking which, although still
unfinished, is known to require theoretical constructions that far outrun the ad hoc precepts of
our explicit grammatical knowledge (Rawls, A Theory of Justice, 47).

For Chomsky, we construct linguistic theories on the basis of our intuitions about
grammaticality.  Chomsky’s goals are the specifications of Universal Grammar (UG) and the
transformation rules which map UG into specific natural languages.  To specify the structure of UG,
linguists rely on intuitions of ordinary folk regarding grammaticality.  These intuitions about
grammaticality form the starting points of the theory, as our intuitions about fairness and justice form the
starting points of the theory of justice, as our intuitions about which deductions are acceptable form the
starting points of logical theory, and, I am arguing, as our intuitions about mathematics form the starting
points of mathematical theories.  The theory of grammar is then tested by its conformity to our linguistic
intuitions.  Our final theory is constructed to accommodate our intuitions, balanced with our interests in
simplicity, strength, and other theoretical virtues.

These circular philosophical methods of Goodman, Rawls, and Chomsky are also found in
Jerrold Katz’s response to Quine’s argument against the intensions, the circularity criticism we saw in
§2.  Katz develops what he calls a non-reductive or autonomous theory of sense, defining sense strictly in
terms of sense properties.

(D) Sense is that aspect of the grammatical structure of sentences that is responsible for their
sense properties and relations (e.g. meaningfulness, meaninglessness, ambiguity, synonymy,
redundancy, and antonymy) (Katz 2004: 17).

By defining ‘sense’ in terms of sense properties, Katz gives up the demand for a reductive
definition and adopts the family of related intensional notions together.  We have a set of inter-
theoretically linked intensional terms: analyticity, meaning, synonymy.  We adopt the whole group by
appealing to their systematic virtues for the intensional idioms themselves.  His circular definition D
allows substantial characterizations of the relations among various intensional properties.118

The autonomous theory of sense was not acceptable to Quine.  But the central question facing the
intuition-based autonomy platonism is whether the autonomous theory of sense is objectionable because
of its structure or for some other reason.  If the problem is structural, then intuition-based autonomy
platonism, as well as these other philosophical circles, have to be abandoned.

But despite his argument in “Two Dogmas,” Quine’s real objections to meanings are not formal
or logical, against the circularity of the definition.  Quine’s real arguments are Okhamist, concerning
whether they must be introduced to account for behavior.

The question of assuming intensional notions in our theory comes down to the question of
whether they would play a useful role in a theory that meets the test of prediction.  That is where
the doubts come (Quine 1990: 198).

This interpretative claim is centrally important here.  Since the question of the acceptability of
intensions concerns whether they play a role in a legitimate theory, the argument against circularity in

118 The idea of a adopting a family of related notions may be seen in Quine’s adoption of the
family of notions of logical truth: equivalence, implication, consistency; see Quine 1986: 48-49.  We
could take this family of logical notions as a fifth example of a virtuous circle. 
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“Two Dogmas” is otiose and there is no relevant objection (at least in Quine’s argument against
meanings) which can generalize to other philosophical circles (or “closed curves”).

In mathematics, circular reasoning is often useful and may be essential.  For example, derivations
of equivalencies, as of different versions of the axiom of choice or of the parallel postulate, are inherently
circular.119  Such examples abound within mathematics.  Moreover, as Russell argued, the standard
account of our interest in the axioms of mathematics is insufficient without a recognition of the inherent
circularity in our methods, as we saw in §9.5.  On Russell’s view, and my own, our adoption of
mathematical theorems is not based on some kind of especial insight into fundamental axioms.  We adopt
a theory en masse, justifying the axioms by the theorems they yield and justifying the theorems by appeal
to the axioms.  Again, the reasoning is circular.

§5: Vicious Circles in Science
In §2, we looked at two philosophical arguments which appeared fallaciously circular: for the

veridicality of scripture and for meanings.  I then argued that circular reasoning is a central component of
some philosophical methods and that at least one of those two arguments, the one about meanings, may
be unproblematic even though it is ungroundedly circular.  I do not mean to indicate that there is no
problem with circular reasoning.  Circular reasoning in ordinary contexts can be sophistical and
irresponsible.  Descartes is correct that the scriptural circle is unconvincing to many people.  And
circularity is related to some deep problems in science.  In this section, I want to show how the problem
of circularity in philosophical methods is of a piece with some problems in science proper.

In academic contexts, several recent papers allege that circular reasoning underlies some
dangerous errors in science.  

Inability to detect circles in others’ arguments leaves people at the mercy of inappropriate or
unscrupulous attempts at persuasion. Inability to detect or to break out of circles in one’s own
thinking may lead to narrow-mindedness, or even delusions, in which one’s beliefs about a topic
are self-authenticating, sealed off from evidence that might cast doubt upon them (Rips 2002:
768).

Gerd Gigerenzer complains that psychologists errantly invoke overly simplistic (one-word) or
circular explanations, ones which are, unscientifically, immune from refutation.

Here is how circular restatements work: The observation that A influenced B is “explained” by
saying that A had the propensity to influence B... The explanation is the phenomenon, merely
couched in slightly different terms. Thus, when researchers observed that people are influenced
both by the logical form of a syllogism and the believability of its conclusion, this belief-bias
effect was explained by the operation of two reasoning systems, one logical and the other based
on prior belief  (Gigerenzer 2009: 2).

Gigerenzer describes ascriptions of so-called matching bias which do no more than label errors
which participants make on the Wason selection task.  They hint at the presence of a psychological
mechanism one might find explanatory of subjects’ errors.  But they do not provide any evidence for that

119 “[I]n the context of the axioms of Euclidean geometry, the parallel postulate was proved to be
equivalent to the proposition that the sum of the interior angles of a triangle is 180 degrees.  It is not very
plausible to claim that the derivation of the theorem was fallacious on account of begging the question”
(Wilson 1988: 50). 
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mechanism beyond the errors themselves.
Gigerenzer thus frames the old problem of vacuous explanation (e.g. morphine having the

dormitive virtue) as one of circularity in scientific methods.  Since the phenomenon and the explanation
are equivalent, pretending that one explains the other is viciously circular.  Gigerenzer extends this
criticism from psychological explanation to behavioral economics, including research on inequality
aversions, availability heuristics, and other cognitive biases.

In a recent paper in neuroscience, Vul, Harris, Winkielman, and Pashler raised striking worries
about high correlations between activity in the brain and measures of personality and social behavior. 
Validity levels in several reports even exceeded the reliability of the measure.  Vul et al. noticed that a
wide range of researchers looking at correlations between brain activity (as measured by fMRIs) and
emotional or behavioral conditions selected only the data from areas of the brain (voxels) that showed
correlations in early tests.  Scientists were making what Vul et al. call a nonindependence error.

This approach amounts to selecting one or more voxels based on a functional analysis and then
reporting the results of the same analysis and functional data from just the selected voxels. This
analysis distorts the results by selecting noise that exhibits the effect being searched for, and any
measures obtained from such a nonindependent analysis are biased and untrustworthy (Vul et al.
2009: 279).120

As an analogy, Vul et al. show that one can select a weather station whose temperature readings
seem to predict changes in the value of a set of stocks with a high correlation.  They computed the
correlations between the readings of a weather station in Adak Island, AK, with each of 3,315 financial
instruments available for the New York Stock Exchange between November 18 and December 3, 2008. 
But they averaged the correlation values of only the stocks whose correlation exceeded an arbitrarily high
threshold.

Thus, the final measure (the average correlation of a subset of stocks) was not independent of the
selection criteria (how stocks were chosen): this, in essence, is the nonindependence error. The
fact that random noise in previous stock fluctuations aligned with the temperature readings is no
reason to suspect that future fluctuations can be predicted by the same measure, and one would
be wise to keep one’s money far away from us or any other such investment adviser (ibid: 280).

Vul et al. label the nonindependence error one of vicious circularity: one chooses the voxels by
their correlation with the phenomenon under study and then reports a high correlation based on the study
of the (blood oxygen levels in those) voxels and their relations to observable behavior.  They argue that
the error is pervasive throughout neuroscience.  Fiedler 2011 argues that this general problem of
sampling bias, of choosing samples based (viciously circularly) on their prior-known characteristics, is
pervasive in psychology, too.121

In a 1994 paper, Harold Brown considered just these kinds of recently-observed problems in the

120 See also Kriegeskorte et al. 2009:  “Such distortions can arise when the data are first analyzed
to select a subset and then the subset is reanalyzed to obtain the results. In this context, assumptions and
hypotheses determine the selection criterion and selection can, in turn, distort the results” (535).

121 Hahn 2011 argues that some of the problems may not be circular arguments, technically, but,
“[P]otentially illicit dependence” (Hahn 2011: 179).  Absent a better theory of circular reasoning, the
distinction matters little here.
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philosophy of science.  The problem Brown considers is related to the old problem of the observation
sentence: if all observations are theory-laden, then no observation can support a theory without
circularity; any observation is guided by the theory it is supposed to test.  There appears to be no way to
step out of the circle of our best theory to determine whether evidence supports it.  

Brown argues that this problem is merely theoretical.  In practice, observations can contravene an
assumed theory.  He considers using telescopes to determine the change in angle between two distant
celestial objects.  One assumes the theory of relativity in the process of designing the experiment.  In
particular, one uses a relativistic formula for the Doppler effect to determine the recession velocity of one
of the objects.  One then uses the recession velocity to determine the change in angle between the two
objects.  Using the recession velocity to confirm relativity theory would lead to a problematic circle,
since we assume the relativistic version of the formula for the Doppler effect.  But using the recession
velocity to determine the change in angle between the two objects does not violate circularity strictures,
since the resultant calculation can yield a speed (between the two objects) greater than the speed of light,
which is prohibited in relativity theory.  In other words, one assumes relativity theory to design the
observation/ experiment, but there remain opportunities for the result to contradict the assumed theory.  

[T]he moral of this story is that the essential use of an hypothesis in the interpretation of a set of
observations does not automatically prevent an empirical outcome that challenges that
hypothesis. Such challenges may be impossible in some cases, but this must be shown by
detailed examination of the specific case in question (Brown 1994: 409).

Brown thus distinguishes circular reasoning from defectively (or viciously) circular reasoning,
even within science, even among the kinds of closed, or sealed, circles which one might consider
absolutely problematic.  Shogenji 2000 argues that Brown’s example and others like it are properly
understood, within a Bayesian framework, as not circular at all.  Instead of taking a claim (e.g. the theory
of relativity) as both an hypothesis and a background belief under test, which would lead to circularity,
we can see it as an hypothesis twice.  Similarly, but within the context of economics, Nagatsu 2010
argues that the availability of disconfirming results obviates worries about the circularity of the set-up. 
Whether circular reasoning in science is legitimate or not depends on the particular case, on the design of
the experiment and the opportunities for a result to undermine a given hypothesis.

The problem of distinguishing between legitimate and illegitimate scientific methods in
neuroscience, psychology, and empirical science broadly thus appears to be difficult and messy.  I have
no broad and easy solution to it.  The problems must be solved by working practitioners in their
respective fields, not dilettante philosophers like me.  What is important to note about the discussion of
this section is that the question of whether reasoning is viciously circular is really a deep question about
scientific or philosophical methodology.  

Still, there are two morals that might generalize to any methodology.  First, with Shogenji, we
can see both particular claims and theories which are to be brought into balance with them as hypotheses
available for testing.  For the case of central importance here, this entails seeing both our mathematical
intuitions and our systematizations of them as hypotheses under consideration.  Second, it is important to
have criteria which can undermine hypotheses and bring particular judgments into question.  All claims
must subject to evaluation and refutation.  Again, in the mathematical case this is the role of a solution to
the demarcation problem.

§6: Virtuous Circles and the Demarcation Problem
Let’s return to a more-direct evaluation of whether ungrounded circular justifications, like the

ones to which I appeal in my defense of intuition-based autonomy platonism, can be legitimate.  Rosanna
Keefe limns three cases in which philosophers accept some circularity.  
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First, take accounts of response-dependent concepts. Many have thought that the essence and
application conditions of various concepts must be characterised by reference to judgements
involving the very notions in question. For example, they specify the conditions in which the
concept of red applies to something in terms of people’s judgements that it is red; similarly,
perhaps being money requires being regarded as money. Second, some philosophers have
proposed self-professed ‘non-reductive’ analyses of, for example, possibility. They deny the
notion of possibility can be reduced to non-modal notions and claim to give illuminating
analyses, despite presupposing, or employing, some (primitive, or unanalysed) possibility. Third,
it is sometimes said that circularity can be fine if the circle of concepts is big enough. Perhaps we
can analyse concepts by tracing their conceptual connections with other concepts, where,
arguably, circularity is unavoidable, since you cannot escape the network of inter-connected
concepts (Keefe 2002: 276-7).

Let’s call these:

AC Application conditions
NRA Non-Reductive Analyses
SC The size of the circle

Taking SC first, one might think that virtuous circles are just large ones.  Iacona and Marconi, for
example, propose that one might discern fallacious circular reasoning by the “straightforward” entailment
of a conclusion from a premise (Iacona and Marconi 2005: 30).  Similarly, Mark Johnston claims that
definitions are circular only when they yield trivial biconditionals; see Johnston 1989: 147.  The
examples of §4 are large circles.  Small, ungrounded circles, as in Descartes’s scriptural example, seem
unproductive, both pragmatically and philosophically.  

Moreover, as we increase the size of a defective circle, its viciousness seems to wane.  CG1, one
might plausibly think, is a worse argument than CG2.

CG1 We know that God exists because we know that God exists.
CG2 We know that God exists because the Bible says that He does.

We know that the Bible is true because it is the word of God.

Given that CG2 seems to improve the relevant argument, if only slightly, one might wonder
whether large size could be a sufficient condition for virtuous circularity.  The examples of useful circles
of §4 all seem to gain support from exploring the mutual interrelations among various concepts: Quine’s
between various intensional properties; in mathematics, the relations among axioms and derived
theorems and among different varieties of axiomatizations; in ethics, among particular ethical claims and
theories.

Both Shogenji and Hahn argue that larger circles can help achieve the pragmatic goals of
presenting an argument.  By increasing the size of the circle, we increase our confidence in the inter-
related aspects of the large circle and thus increase our confidence in the circular argument.  Hahn’s
example, related to the worrisome circles in scientific methodology, is patterned after CG2.

CE Electrons exist because their signature effects can be seen in a cloud chamber (Hahn
2011: 173).

On the one hand, we can see the underlying structure of CE as just like that of CG2.  On the
other hand, CE seems legitimate in ways that CG2 is not.
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The self-dependent justification case is analogous: Staring at the cloud chamber, one cannot
simply assume that the traces one is seeing are the signature effects of electrons, not only
because the existence of electrons is the claim in question, but because even if they do exist,
what the cloud chamber shows may not actually be caused by electrons in the way our theories
assume. The desired interpretation of what one is seeing, however, is made more likely by our
observation, and that, in turn, increases our degree of belief in the claim (Hahn 2011: 174).

One difficulty for using the size of a circle as a guide to its virtue is that some large circles are
just as useless as very small circles, like CG1, and can be more defective just for obfuscating.  The
psychic who uses the claims of the crystal ball to confirm the claims of the crystal ball is no less
defective for appealing to long and complicated psychic connections.   “An MSPP [mediate standard
petitiones principii] spanning several mediating arguments will no doubt stand a better chance of passing
undetected, but will beg the question just as much as an ISPP [immediate standard petitiones principii]”
(Smith 1987: 207). 

Consider Walton’s Bank Manager example.

Manager: Can you give me a credit reference?
Smith: My friend Jones will vouch for me.
Manager: How do we know he can be trusted?
Smith: Oh, I assure you he can (Walton 2006: 248).

We might interject a series of references, beyond Jones, for Smith.  But no matter how large we
make the trustworthiness circle, the circularity problem arises.  Even if everyone were to think that Smith
is trustworthy, it may still be the case that s/he is not.  Since trustworthiness is a concept whose
conditions are defined outside the given circle, there is no hope of saving the ungrounded trustworthiness
circle, no matter its size.

Still, it may be that in the case of some philosophical concepts, in which external conditions for
definition are absent, size is a relevant factor.  What gives the examples of §4 their utility is, in part, the
demonstrated interrelations.  The larger such a circle, the more interrelations can be demonstrated.  So
SC may be a factor.  It may even be a necessary condition.  It is not a sufficient condition for virtue.

Similarly, cases of AC need not be problematic.  Keefe shows that we can specify the application
conditions of ‘red’, without appealing to redness itself, even if some measure of circularity is present. 
She considers: ‘x is red iff P judges that x is red’.  The recurrence of ‘red’ on both sides of the
biconditional ensures a measure of circularity in the definition.  But we can determine whether P judges a
ball to be red without presuming any knowledge of whether the ball is actually red.  Following
Humberstone 1997, Keefe calls such cases inferentially circular, but not analytically circular.

Still, some related cases are problematic.  Keefe considers ‘S knows that p iff S has a true belief
that p which S knows to be justified’.  Though we need not assume ‘S knows that p’ to determine the
application conditions on the right-hand side, we do need to assume a different knowledge condition:
whether S knows that her belief is justified.  This redundancy is an unacceptable circularity.

Keefe concludes that the difference between the two cases is one of groundedness.  “[T]he
circularity of an account is acceptable iff the target term appears on the righthand-side only in the context
of compositionally independent operators” (Keefe 2002: 282).  In the end, she rejects even this
conception.  But even if it were to work, it would merely return us to Walton’s point about enthymemes:
in cases in which there is external support for a circle, the circularity may not be question-begging.  But
we are looking for criteria for ungrounded circles.

Keefe’s NRA is closest to the point.  If we have a non-reductive analysis of the theory of sense,
say, or a non-reductive theory of justice, we have to ask whether to accept the theory of sense or justice
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as a whole.  We may not be looking for grounding of some portion of the theory.  Indeed, the whole point
of autonomy platonism, in contrast to the indispensabilist’s platonism, is to avoid grounding our
mathematical justifications empirically.

In this vein, John A. Burgess argues that circular definitions are problematic if they are either
uninformative or inaccurate.  Unfortunately, as we know from the old paradox of analysis, if a definition
is accurate, it tends to be uninformative and if it is informative, it tends to be inaccurate, extending our
concept beyond the common understanding.

Still, working with the dispositional theory of color as an exemplar, Burgess holds that some
circular definitions can be both informative and accurate.  He claims that the following set of circular
definitions of redness is benign.

10. x is red iff x is disposed to look red to most red-competent observers o under red-suitable
conditions c.

11. Conditions c are red-suitable iff all and only the things which are disposed to look red to
red-competent observers in c are red.

13. An observer o is red-competent iff all and only the objects that are disposed to look red to o
in suitable conditions are red.

....

I think we do best to think of (10), (11), and (13) as a set of simultaneous equations. No concept
in the family - red, red-suitable, red-competent - has any priority. None is reducible to any of the
others... nor is any reducible to concepts outside the family. We ascribe all three under the
constraint that we are bound to adjust our judgements to ensure that each of (10), (11), and (13)
come out true. Our trio of concepts stabilize one another. The blatant circularity ensures this. The
informativeness constraint is met in two ways. First, what I have just said about our trio of
interdefinable concepts is informative. Showing how they interact as a family illuminates each of
them. Secondly... assertability-conditions give us an entering wedge for applying the definitions
in a way that is almost always inferentially non-circular. Noncircular surrogates could be at best
only contingently true; at worst they would fail, even at the extensional level, to conform to the
accuracy norm. What more is required to show that the circularity evident in the dispositional
theory of colour is virtuous? (Burgess 2008: 225-31).

The interdependency of Burgess’s family of definitions also describes the examples of §4 and the
relations between theorems and various axiomatizations in mathematics.  In all cases, we have circles
which provide stability, informativeness, and illumination.  While circles may be supposed to be
problematic because they are uninformative or inaccurate, the circles we find in mathematics, in
intensional theories, in Rawlsian ethics, and in Goodman’s view of logic, are neither.

§7: Autonomy Platonism and the Demarcation Problem 
Determining when a set of definitions, a philosophical theory, or a scientific methodology is

benignly circular, then, whether it is stable, informative, and accurate, or merely empty bloviating,
requires a view about when to adopt a theory and its phenomena, about the demarcation between
legitimate theories and phenomena and illegitimate ones.  As we saw in the beginning of this chapter, this
is, or is a corollary of, the demarcation problem in the philosophy of science: are mathematical theories,
ethical theories, linguistic theories (of abstract senses), induction, and deduction legitimate accounts of
real phenomena?  Or, are they, like the psychic’s theory, not?

Exact characterization of acceptable scientific methodology is a notoriously intractable problem. 
Still, there are some relatively uncontroversial claims.  Good science produces replicable results.  These
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results cohere with other accepted results.  The methods used in good science receive broad acceptance. 
When these factors are absent, results are dubious.  

Burgess and Rosen, in their A Subject with No Object, describe seven conditions on good
science, conditions which we could invoke, as a working hypothesis, for the designation of virtuous
circular reasoning.

BR1. Correctness and accuracy of observable prediction;
BR2. Precision of those predictions and breadth of the range of phenomena for which such

predictions are forthcoming, or more generally, of interesting questions for which
answers are forthcoming;

BR3. Internal rigour and consistency or coherence;
BR4. Minimality or economy of assumptions in various respects;
BR5. Consistency or coherence with familiar, established theories;
BR6. Perspicuity of the basic notions and assumptions;
BR7. Fruitfulness, or capacity for being extended to answer new questions. (Burgess and Rosen

1997: 209).

The application of BR1-BR7 to a paradigmatically unscientific theory like astrology is weak in a
way that the application to a paradigmatically legitimate one, like physics, is strong.  That’s some
evidence that this characterization, or a refinement of it, would work for distinguishing virtuous from
vicious circles in philosophy.  

I am going to adopt BR1-BR7, somewhat dogmatically and with only one small refinement, as a
paradigmatic solution to the demarcation problem.  An extended discussion of the details seems
unnecessary here.  I believe that any solution will yield the same results I am about to sketch regarding
mathematics, our central focus.  So let’s look at how BR1-BR7 apply in the mathematical case.

Merely by omitting ‘observable’ from BR1, or by interpreting that word to apply to our
observations of mathematical results, like a token of a proof, or to intuitions of mathematical truths, the
list is perfectly applicable to mathematics.  Fundamental mathematical theorems should be perspicuous,
as in BR6, and proofs, or at least proof methods, must be available for scrutiny and receive broad
acceptance, as in BR5.  Also as in BR5, mathematical results must cohere, especially results which
bridge mathematical sub-fields.  Consider the mathematical virtues of Wiles’s proof of Fermat’s theorem,
which bridged topology and number theory. Wiles’s proof increased the range of mathematical
phenomena which topology predicts, as in BR2.  Mathematicians often seek alternative proofs of a
theorem, which helps with BR1, BR3, and BR5.  A mathematical theory must be consistent, as in BR3.122 
Axioms should be fruitful, as in BR7, and few, as in BR4.  The consequences of axioms should be
intuitively acceptable.

The weights we ascribe to the different factors may differ from those we ascribe in any particular
empirical case.  Mathematicians emphasize consistency, BR3; empirical scientists prefer to emphasize
economy, BR5.  But empirical cases will differ amongst themselves, too.  Physicists tend to weight
precision, BR2, more than psychologists, whereas the reverse seems to be true of perspicuity, BR6.

The revised interpretation of observation in BR1 will seem like a major concession to those who
deny mathematical intuition.  They will argue that observation is essential for validating our beliefs,
whereas mathematical intuition seems like magic.  But, the uses of intuition on which I am relying are
thin and mundane; they are ordinary aspects of everyday mathematical practice.  Moreover, the other

122At least, it must be globally consistent.  Dialetheic systems might contain local inconsistencies,
but these have to be isolated somehow from the rest of a theory.
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criteria overwhelmingly favor considering mathematics as a science.  We should not stack the deck in
favor of one criterion alone.  Weighting observable predictions over mathematical predictions, and over
the other criteria, renders BR2-BR7 moot.  Such a move would be acceptable only to someone with
independent objections to taking mathematics to be a legitimate science.  In that case, we are using the
demarcation criteria, and really only BR1, just to rule out mathematics.

One should not worry that a wider interpretation of BR1 will actually grant legitimacy to pseudo-
sciences.  Pseudo-sciences like parapsychology fail to satisfy multiple criteria.  Psychic practice, for
example, posits conduits to knowledge which conflict with our best scientific theory while attempting to
explain the same phenomena.  Empirical evidence weighs heavily against such conduits.  Psychics can
say whatever they want and their results are not replicable.  They fail to cohere with accepted science. 
The psychic’s methods are suspect at all of BR1-BR7.

The application of BR1 - BR7 to mathematics varies from their application to science, but they
are the same criteria, properly applied to different domains.  Applied to mathematics, the specific
constraints on theory construction are not empirical.  The phenomena explained by mathematics are
mathematical facts, not empirical ones.  Still, the list shows how mathematics works like good science.

This list need not be taken as a revolutionary insight.  These criteria are just the ordinary
constraints on scientists in their daily work.  Neither need we take this list as a categorical solution to the
demarcation problem.  Any solution to the demarcation problem with pronounce mathematics legitimate
and worthy of our belief.

We look to the practice of science as having consequences for what we should believe exists. 
The question naturally arises about what makes physics such that we should believe in the objects to
which it refers.  To answer that question, we develop criteria for determining which scientific practices
are legitimate.  As we do so, we find that mathematics itself, independent and autonomous from
empirical science, is good science, even more successfully fulfilling any set of criteria we may develop.

The use of such criteria may themselves be seen as question-begging, as putting a label on the
difference rather than explaining it.  The nominalist may argue that using particular mathematical claims
to support our general mathematical theories while using the fact that mathematical theories can yield
particularly satisfying mathematical claims is viciously circular.  The platonist may argue that the circle
is, following Burgess and Keefe, virtuous.  On the proposal I am presenting, of seeing the question as a
corollary of the problem of demarcation, we ask whether a particular set of criteria, like BR1-BR7 apply
to mathematics.  Predictably, the nominalist denies it and the platonist affirms it.  Similar fruitless
dialogues can occur concerning the theory of sense or deduction.

The nominalist can argue that the circularity in our justifications of our beliefs in these theories
gives us a hint that there is a problem with them.  Unless we have a non-mathematical reason for
believing mathematical theorems (say in terms of the applicability of mathematics to the physical world)
or for believing in senses (say in terms of the grasping of concepts in thought), we should be suspicious
of such theories.  But this objection just shows, once again, that the real question about ungrounded
circular reasoning in philosophy is the demarcation problem.  We know from the fact that circular
arguments are valid that there is no formal problem with them.  We now see that the problem with
ungrounded circular reasoning is not so much one of putting the arguments in proper pragmatic context. 
Instead, it is a general problem in the philosophy of science.  The defective and dangerous circles of §5
are problems with scientific methods; to see them as problems of circular reasoning is misleading.  The
virtues of the philosophical circles of §4 are ones which we apprehend from the same point of view of
evaluating theories as we use to develop solutions to the demarcation problem.

A typical attitude toward circular arguments is that they are empty or useless, pragmatically. 
“One convenient feature of the sweeping rejection of circular justifications is that the objector is freed
from any further need to consider the details of the argument in question” (Brown 1004: 406).  In the
cases of the philosophical circles I am examining, and the way we should deal with them, this criticism is
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inapt even though the circles are closed.
I have discussed a wide range of circular reasoning in philosophy.  But my central concern is

with the autonomous justification of mathematical beliefs.  I invoked other circles to show that the
problem facing our understanding of mathematics is a broad one, that the solution I am suggesting is
closely related to solutions in other areas and that whatever objections one might have to my account of
intuition-based autonomy platonism, one should not take its faults to be formal.  If one rejects
mathematical beliefs, as the fictionalist does, one should do so for considerations about the goodness of
mathematical theories, ones which, frankly, I am at a loss to imagine.

One should not think that all of these examples of philosophical circles stand and fall together,
though the form of the defense I present is in common.  We believe mathematical theorems because of
their intuitive appeal and their coherence with other results.  We believe in the generalizations we make
on the basis of induction because of their observable predictions and their coherence with other
generalizations.  We have circles among evidence and theory.  We ask whether the whole package is
legitimate and look towards meta-theoretical criteria, such as BR1-BR7, to determine our answer.

§8: Intuition-Based Autonomy Platonism and Naturalism
Epistemologists sometimes distinguish between accounts which focus on the context of

discovery and ones which focus on the context of justification.  The intuition-based autonomy platonist
provides a robust account in the context of discovery since it essentially adopts mathematical practice as
self-justifying.  The question facing the intuition-based autonomy platonism which I’ve tried to address
in this chapter is whether the method of seeking reflective equilibrium in mathematics can be
justificatory.  The challenge, I take it, is to show that the circularity of the account is no barrier to its
being justificatory.  I have shown this by arguing that accounts which rely on reflective equilibrium in the
context of justification are common and useful and unproblematic.

As I mentioned earlier, Maddy has paved much of the ground over which I have trod, especially
in her deference to mathematical methods, as they are practiced, as an element of mathematical
methodology.  But Maddy’s account falls short of mine in ways which can be attributed to her
naturalism.

‘Naturalism’ is a plastic term with a variety of senses.  There are two ways in which Maddy’s
naturalism debars a proper solution to mathematical epistemology.  The first way is in her inability to
invoke mathematical intuition as a significant aspect of that epistemology, in her concern about
mysticism.  The second way is in her unwillingness to evaluate the various strengths of different theories,
to engage the demarcation problem.  Maddy’s Second Philosopher refuses to pronounce on the
legitimacy of mathematics because she believes that any evaluation of theories is impossible.  The
intuition-based autonomy platonist I have described has no scruples about either mathematical intuition,
as a fallible but essential cognitive capacity for apprehending mathematical claims, or about
distinguishing legitimate from illegitimate theories.

There is a sense of ‘naturalism’ on which my account of mathematical epistemology is utterly
naturalist.  It is the sense on which a description of humans as physical beings, with no extra-sensory
perceptions or superstitions, is likely to be complete.  On other senses of naturalism, ones on which all
objects of our ontology are ordinary or physical objects, say, this account is non-naturalistic.  I do not
know what the proper definition of ‘naturalism’ is and I do not care to adopt any particular one.  Indeed,
‘naturalism’ is not an important doctrine to me and I do not want to claim that my view is naturalistic. 
But I do wish to insist that there is nothing spooky or mystical about it.

Typical objections to platonism focus on the mystery of our access to abstract objects.  I have
argued that there is no mystery, and no access problem, once we understand a posit-based ontology
properly.  I do not expect that my claims will be readily accepted, given that this virtue of Quine’s
indispensability argument, which initially and properly adopted this posit-based view, has never been
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fully appreciated.  The posit-based view deflects the access challenge.  There is no problem about
knowing mathematical objects and no special Gödel-style perception of objects required.  Instead, the
account I have presented faces the criticism of circularity and bootstrapping.

I hope to have shown, in this chapter, that worries about bootstrapping are endemic to a wide
range of philosophical accounts: in linguistics, in ethics, in logic.  They are going to arise for any theory
which does not depend, either directly or indirectly (via holism), say, on physical theories.  Even
empirical scientific theories are liable to bootstrapping criticisms if we raise the questions of why we
should believe them: we believe in our scientific theories because they account for our sense experiences
but we understand our sense experiences only through a background or conceptual scheme of empirical
theories.  The bootstrapping concern, then, applied to empirical science, is related to the challenge for
scientific realists.  The problem, if it is a problem, is ubiquitous.

And in its ubiquity, I believe, we find ways to deflate it.  When we reflect properly on our
methods in philosophy and in science, we find that they are generally attempts to align particular
observations with general claims.  We grasp a variety of particular claims.  We attempt to systematize
those claims broadly.  We are willing to abandon some of the particular claims for the benefits of elegant
and broad systematizations.  We look to extend our systematizations to comprehend further particular
claims.  There is nothing mystical or magical about this process and it does not secure any belief.  But
neither does its circularity impugn our beliefs in the theories, or particular claims, or the nature of the
objects to which the particular and general claims refer.  That we hold our claims fallibly does not entail
that we are debarred from making claims about the necessity of mathematical truths, when true, or that
our reasoning in proofs and in the understanding of particular claims, is a priori.  



Chapter 11: Conclusions

In the first part of this book, we looked at the indispensability argument through the eyes of an
unapologetic platonist and found it sorely wanting.  In the last two chapters, I developed an alternative,
autonomy platonism.

Any theory which is not strictly empirical science will seem suspect to some philosophers just
for being autonomous.  To such philosophers, I have little to say except to implore them to recognize
how their accounts are incongruous with mathematics as it is practiced and with our ordinary views about
mathematics.  It is the rare person who does not recognize the robust security of our mathematical claims. 
The question is how best to mature our intuitions about our mathematical beliefs.  Contemporary
philosophers of mathematics tend either toward denying them (as fictionalists and reinterpreters do) or to
a lame version of platonism on the basis of an indispensability argument.  This book is an attempt to
provide reasons away from the lame version of platonism and toward a more substantial one.

We started, as so many discussion of philosophy of mathematics do these days, by looking at the
Benacerraf-Field dilemma.  It is generally accepted that Field’s version, which demands that the platonist
account for reliability, is better than Benacerraf’s original version, which couches the problem in terms
of the causal theory of knowledge.  But I think that there is more to be said in favor of Benacerraf’s
version than there is in favor of Field’s.  Field denies that the central problem Benacerraf raises is about
justification.  He demands an account of the reliability of beliefs about abstract objects.  But an account
of reliability is fairly easy.  Mathematics is immanently reliable.  The real question is whether the reliable
and replicable methods of mathematics are justifying, whether the circular nature of the justificatory
story I have been telling is legitimate.

One way to see that the problem is one of justification is to remember that the central problem
facing the platonist, for a long time, is one of access.  The access problem arises centrally from a naive
view about ontology, one which is connected to a naive concept of causation.  The naive story is that
what exists are objects with which we have direct causal contact.  Quine’s view of ontology as a system
of posits properly undermines this story and the access problem disappears with it.  But the worry
remains: how can our mathematical beliefs be justified in the absence of causal contact between us and
the mathematical world?  That is, I take it, Benacerraf’s question.  My answer to that question involved
reflecting on our cognitive capacities, especially on our mathematical intuitions, and the practice of
refining and systematizing our intuitions into theories.  

Intuition is of course a controversial subject, but my uses of it are fairly thin and I think that they
should be uncontroversial.  We possess neither a complete account of what exists nor how we know what
exists.  A healthy attitude toward our speculation would be to seek an equilibrium between our best
estimates of each.  Indispensabilists insist that we settle what exists according to strict empiricist tenets,
that all evidence is sense evidence, and that our best beliefs about what exists must conform to these
strict constraints about our capacities.  Mathematical beliefs surely are beliefs of spatio-temporal beings. 
But the best account of these beliefs may posit capacities, such as intuition, which do not fit within the
empiricist’s strict constraints.  Such justifications may be acceptable to a broad-minded naturalist as long
as they are consistent with our best scientific (including neuroscientific) accounts of our selves. 
Naturalism in this broad sense could account for mathematical beliefs, beliefs about abstract objects
which are inaccessible to our sensory apparatus.

Given its ubiquity and enduring security, we need an account of our mathematical knowledge. 
Part of this account just refers to ordinary mathematical methodology.  Another part parallels Quine’s
account of the construction of empirical theory.  On Quine’s account, the naturalist starts with ordinary
objects and constructs a theory to account for our experience.  The autonomy platonist starts with
mathematical intuitions, perhaps about the natures of mathematical objects, and constructs a theories to
account for mathematical phenomena.  The question for the philosopher of mathematics, as for the
philosopher of science generally, is to explain, “How it is that man works up his command of that science
from the limited impingements that are available to his sensory surfaces” (Quine 1974: 3.)
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Quine avoids sense-data reductionism in part due to the practical impossibility of constructing
scientific theory out of sense-data, but also on principle.  The logical empiricists wanted unmediated,
unassailable data as a starting point.  But the notion of a sense datum is itself the product of a substantial
theory about human perception and the way in which we gather information.  Quine accepts our beliefs
about ordinary physical objects as defeasible starting points for the construction of scientific theories. 
Those theories are to be judged both on the basis of their ability to account for this initial evidence and,
since evidence under-determines theory, on the basis of constraints on theoretical construction.  All
indispensability arguments share with Quine this view that our evidence does not include our
apprehensions of mathematical phenomena.

The intuition-based autonomy platonism I have defended starts with substantive claims in both 
epistemology and metaphysics.  We start our mathematical theorizing with intuitions about a range of
mathematical objects: sets, numbers, and spaces.  We discover new theorems and generate new proofs
which contain existential assertions and we expand our mathematical ontology.  Debates over
foundations, especially in set theory, have not generated universal agreement on the extent of the set-
theoretic universe; we may contract our ontology.  We seek a reflective equilibrium between our
mathematical intuitions and our mathematical theories, guided by a recognition of the fallibility of our
beliefs, both our intuitions and how it all fits together.

In its deferential appeal to the mundane aspects of mathematical practice, my account of
mathematical epistemology may be disappointing.  There is no magic here.  Mathematical objects are not
the kinds of things we access with our senses or in any other way.  Critics of platonism often argue that
the access problem is serious, but there’s no real problem to be solved.  Mathematics is on solid ground. 
The proper account of mathematical epistemology should be mundane and disappointing.  The problems
only arise from a naive view about our world, about our understanding of mathematics and our relation to
its objects.
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